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In recent years, deep reinforcement learning has been widely applied in many decision-making tasks re-
quiring high safety and security due to its excellent performance. However, if an adversary attacks when
the agent making critical decisions, it is bound to bring disastrous consequences because humans cannot
detect it. Therefore, it is necessary to study adversarial attacks against deep reinforcement learning to
help researchers design highly robust and secure algorithms and systems. In this paper, we proposed an
attack method based on Attack Time Selection (ATS) function and Optimal Attack Action (O2A) strategy,
named ATS-0O2A. We select the critical attack moment through the ATS function, and then combine the
state-based strategy with the O2A strategy to select the optimal attack action which has profound influ-
ence as targeted action, finally we launch an attack by making targeted adversarial examples. In order to
measure the stealthiness and effectiveness of the attack, we designed a new measurement index. Exper-
iments show that our method can effectively reduce unnecessary attacks and improve the efficiency of
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attacks.
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1. Introduction

Since Deep Reinforcement Learning (DRL) has surpassed the hu-
man level on the Atari game platform (Mnih et al., 2015), the re-
search on the DRL algorithm has developed rapidly. It has been
widely applied in digital games (Lample and Chaplot, 2017), robot
control (Tai et al., 2017), and other fields in the past few years. Re-
inforcement Learning (RL) is defined as a learning process that at-
tempts to find the best action based on the information that an in-
dividual observes when interacting with the surrounding environ-
ment. As a combination of deep learning and reinforcement learn-
ing, DRL is an end-to-end perceptual control system. The agent
learns the optimal behavior by interacting with the environment,
which can be expressed as Markov Decision Process (MDP). In gen-
eral, it can be interpreted by a tuple <S,A,P,R,y >, where S is
the state space, A is the action space, P:S x A xS — [0, 1] is the
transition probability, R denotes the reward, and y € [0, 1) is the
discount factor. At each time step, the current state of the agent
can be represented as s;, and then it will select action a; to en-
ter the next state s;,; according to the policy network s, where
the policy 7 (st,ar) € [0, 1] represents the possibility of choosing
an action and can also directly output the optimal action in the
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state. r(s¢, a;) represents the immediate reward after executing the
action a;. The goal of the agent is to learn an optimal strategy to
maximize the final reward R, which can be interpreted as:

T-1

R= ZEn(s,.a[)[ytr(St, at)] (1)
t

Nowadays DRL is widely used in decision-making tasks with
high security and stability. However, researchers have proved the
vulnerability of Deep Neural Networks (DNN) (Su et al., 2019). Al-
though DRL shows good performance, the combination of deep
learning inevitably leads it to certain vulnerabilities. When brings
convenience to other fields, it also causes security problems and
there are many works around how to defend against attack,
such as quantum encryption (Ni et al., 2022) in the commu-
nication field. Therefore, it’s necessary to study the vulnerabil-
ity to design more robust and secure algorithms and systems.
In 2014, Goodfellow et al. (2015) proposed Fast Gradient Sign
Method (FGSM) to generate perturbation on neural networks,
which provided ideas for subsequent adversarial attacks against
DRL. Huang et al. (2017) who was the first one to add perturba-
tions generated by FGSM to the observation for the attack, but they
did not consider the high correlation between states and actions
in continuous time in DRL. What’s more their method attacks at
each time step and ignores the effectiveness and stealthiness of ad-
versarial attacks. Therefore, Lin et al. (2017) proposed strategically-
timed attack and enchanting attack. The former reduces the num-
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ber of attacks to about 25% of the total time but without consider-
ing the global reward.

In order to verify the vulnerability of the DRL model by using a
more effective and stealthy method, in this paper, we proposed an
attack strategy based on the Attack Time Selection (ATS) function
and Optimal Attack Action (O2A), named ATS-O2A. The attack algo-
rithm mainly focuses on two problems: when to attack and how to
attack. We introduced Attack Time Selection (ATS) function, State-
based strategy, and Optimal Attack Action (O2A) strategy, the first
two are used to detect whether the attack is critical and has an
impact on the agent’s state, while the last considers the impact of
attack action on the total reward.

Using this method, the attacker can achieve an ideal attack ef-
fect with the least number of attacks, while ensuring stealthiness
and effectiveness. We deployed the proposed attack algorithm on
Atari game agent trained by Deep Q-Network (DQN) (Mnih et al.,
2015) and Advantage Actor-critic (A2C) (Mnih et al., 2016) respec-
tively, and proved the superiority of our algorithm compared with
other algorithms through experiments. The key contributions of
this paper are as follows:

» Proposed the attack time selection function which improves the
stealthiness of the attack by measuring the importance of the
current moment.

Proposed optimal attack action strategy which considers imme-
diate reward and total reward to improve the effectiveness of
the attack.

Introduced the state-based strategy by comparing the next state
action of the normal agent and attacked agent, which deter-
mines whether the attack is effective.

Proposed a new attack effect measurement index by compre-
hensively considering attack frequency, attack success rate and
cumulative reward change.

The rest of the paper is organized as follows. Section 2 re-
views the current adversarial attack on DRL. Section 3 describes
the proposed method. Section 4 presents the details of experiment
and analyses the results. Section 5 discusses the mechanism and
performance of the algorithm. Section 6 concludes the paper and
draws the future work.

2. Literature review

Adversarial attack refers to the deliberate manipulation of ma-
chine learning models by attackers through specially crafted in-
put samples to deceive or mislead the models. With the rapid
development of deep learning, attackers are constantly exploring
new attack methods, including using poisoning attacks (Chen and
Koushanfar, 2022), adversarial machine learning (Hernandez-Castro
et al.,, 2022; Zizzo et al.,, 2019), and other technologies (Song et al.,
2019; Wenger et al., 2021), making the effects of adversarial at-
tack increasingly difficult to detect and defend. Poisoning attacks
mainly occur in the training stage which can reduce performance
and reliability by using harmful data. Similarly, in DRL the attacker
manipulates the input data during the training stage thus introduc-
ing a prediction bias to the model. The aim of adversarial machine
learning is to improve robustness and security by studying poten-
tial attacks and threats. These methods are essentially the same
as the attacks on DRL. Especially, in this paper, we will study the
vulnerability of the DRL model which is mainly based on the ad-
versarial machine learning method.

Adversarial attacks in the field of DRL can be divided into
reward-based attack (Zhang et al., 2020), strategy-based attack
(Behzadan and Hsu, 2019; Behzadan and Munir, 2017; Kos and
Song, 2017; Mo et al., 2023), observation-based attack (Hussenot
et al, 2020; Li et al., 2022; Lin et al., 2017; Sun et al., 2020),
environment-based attack (Bai et al., 2018; Chen et al., 2018) and
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action-based attack (Lee et al., 2020) according to algorithm princi-
ple. Reward-based attack refers to modifying the reward signal of
environment feedback, which can either directly modify the sign
of reward value or replace the original reward function with an
adversarial reward function. Strategy-based attack refers to the use
of adversarial agents to generate states and behaviors beyond the
victim agent’s understanding ability, and then cause the victim
agent to enter a chaotic state. Observation-based attack refers to
the attacker adding perturbation to the observed image to make
the victim agent execute the action expected by the attacker. This
is usually achieved by adding perturbations to the image sensor
of the agent. Environmental-based attack refers to modifying the
training environment of the agent directly, mainly by modifying
the dynamic model of the environment and adding obstacles to it.
Action-based attack refers to directly modifying the action output,
which can be implemented by modifying the action space in the
training data. In this paper, we focus on observation-based attack.

In observation-based attack, the attacker adds appropriate per-
turbation to the observation image at a certain time to mislead the
agent to make a wrong choice. While ensuring stealthiness, the
cumulative reward is minimized, and the final state of the agent
even be changed. At present, the research mainly focuses on re-
ducing the frequency of attacks. In the study of Lin et al. (2017),
strategically-timed attack reduces the frequency of attacks to some
extent by calculating the action probability difference of each step.
However, it only considers the attack effect at the current moment
and ignores the impact of the current attack on the subsequent
states and the final attack effect. And in the enchanting attack, al-
though it considers the final target and global optimization of the
attack, it is difficult to predict the states and actions in a long time
range thus causing a low success rate. Sun et al. (2020) proposed
critical point attack and antagonistic attack. But they both limit at-
tack moments and ignore future critical moments. And the selec-
tion of attack action sequences in critical point attack needs to be
exhaustive, which improves the time complexity.

Different from traditional adversarial attack methods of gener-
ating adversarial examples, Gu et al. (2017) proposed to launch the
adversarial attack by implanting a backdoor and changing model
parameters, resulting in the wrong output of the neural network.
Based on the above background, Kiourti et al. (2020) proposed
the backdoor attack and Rakhsha et al. (2020) proposed an en-
vironment poisoning attack against DRL. However, these methods
need to poison a large number of states in the training process to
achieve the gap in performance, and need to be further optimized.
At the same time, all the above algorithms directly measure the
attack effect by the variation of reward, without considering the
internal relationship among attack frequency, attack success rate
and the variation of cumulative reward.

Based on the above problems, we proposed an algorithm that
uses ATS function and state-based strategy to control the number
of attacks and uses O2A strategy to attack at the selected critical
moment. In addition, in order to comprehensively evaluate the at-
tack effect, we proposed a new measurement index F, and the ex-
periment proved that the comprehensive performance of our pro-
posed attack algorithm is better.

3. Methodology

In DRL, the agent interacts with the environment through a se-
ries of operations, each of which changes the corresponding state.
Compared with other forms of adversarial attacks, adversarial at-
tacks oriented to DRL need to consider the influence of actions
on subsequent states and analyze whether to add perturbation to
each state and the possible influence. At the same time, the goal
is to reduce the total reward, and even mislead the agent into a
dangerous state, which is different from the ordinary attack that
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Fig. 1. Process of attack based on observation. Step 1: The victim agent receives an observation x from the environment and sets it as the current state. Step 2: The
victim agent outputs an action according to policy 7 at the normal state. Step 3: The attacker gets the output and crafts an adversarial example x' by Att function to the
environment. Step 4: The victim agent receives x’ and sets it as the current state. Step 5: The victim agent selects the wrong action a’ at attacked state. Step 6: The victim

agent receives a reward after executing a’.

aims to reduce the classification accuracy. In contrast, tasks in DRL
are more complex and specific, requiring a set of highly correlated
action predictions. The adversary needs to change the final goal
of the agent, rather than simply mislead the action of one step.
What’s more, an attack on DRL requires that, in addition to inject-
ing a subtle perturbation into the input, it also causes damage to
the entire process. Figure 1 shows the process in which an attacker
adds perturbations to the agent’s observations to make it select the
wrong action.

For adversarial attacks oriented to DRL, there are two main
problems: when to attack and how to attack (i.e. how to make
adversarial examples). By analyzing the advantages and disadvan-
tages of existing algorithms, we propose a method to select the
critical attack moment using the ATS function, select the targeted
action using 7., obtained by O2A strategy and then analyze
whether to attack through the state-based strategy. The core of the
algorithm is mainly composed of three parts: ATS function, state-
based strategy and O2A strategy.

3.1. ATS function

The DRL algorithm based on policy gradient mainly parameter-
izes the policy m, calculates the policy gradient about the action,
and then adjusts the action along the direction of the gradient to
get the optimal policy gradually. Its output 7 (a|s) = p[als, 6] indi-
cates that when the state is s, the action a satisfies a certain prob-
ability distribution of the parameter 6. Thus, we select the criti-
cal moment by measuring the action probability distribution of the
agent output in a certain state, and the function can be expressed
as:

C(t) = a(Tmax — Tmin) + B(Tmax —T) > A (2)

where Tmax, Tmin and 7 respectively denote the maximum value,
the minimum value and the average value of the output action
probability in a given state, « and S are two parameters which
satisfy @ + 8 =1, and A is the threshold value. For value function-
based DRL algorithms such as DQN, DNN is mainly used to ap-
proximate the reward value function, and the Q value represents
the value distribution of the action in this state. In this paper, the
Q value needs to be processed by the softmax function first, and
then the function can be expressed as:

C(t) = a(max ®(Q(s¢, ar)) — min ©(Q(s¢, ar)))
+ B(max P (Q(s;, ar)) —®(Q(st. ar))) > A (3)

where ®(Q(st, ar)) means normalizing the Q value by softmax
function (temperature coefficient T is 1 in the experiment), ® is
the average value of the function.

The function is composed of two parts, the first part repre-
sents the preference degree of the agent to a certain action in a
given state, and the second part represents the difference among
the probability of all actions. The larger value of C(t), the greater
preference of this moment for a certain action, and the more criti-
cal the moment is. On the contrary, it means that the difference in
action probability at this moment is smaller, so it cannot be used
as the critical attack moment. Through this function, we can select
the most critical moment to ensure that as few attacks as possible
and achieve efficient attack, so as to ensure the time stealthiness
of the attack algorithm. Since o and § are unknown, we designed
a preliminary experiment to determine the values of two parame-
ters.

3.2. State-based model

The model is used to judge whether an attack has a long-time
impact on the subsequent states of the agent. We consider that if
subsequent state and behavior after the attack are not changed, it
means that the attack has little influence on the agent, and the cu-
mulative reward may not have any influence on the final state al-
though it decreases. In order to improve the effectiveness of each
attack, we restrict the number of attacks based on state strategy,
so as to ensure that a single attack can have a profound impact
on the agent. The specific process is shown in Fig. 2: when an at-
tacking moment is selected, the state is recorded as s;. Normally,
as the solid line shows, the agent will execute a; and update state
to s;,1; where its next normal action is a;,1. Then the red dotted
line represents the attack process. The attacker will generate a per-
turbation § and craft an adversarial example that can change the
input state to s; and mislead the agent to state s| 41 Dy selecting
targeted action a;. The next normal action of state s; is a; ;. At
last the attacker will compare a;,1 and a; +1+ If they are different,
it means that both the state and behavior of the agent are affected
and the attack is effective. Otherwise, the attack will be canceled.

3.3. 02A strategy

In traditional attack algorithms, targeted actions are usually se-
lected by suboptimal actions given by the policy function or ac-
tions in the action sequence generated by exhaustive. The former
has little effect on the cumulative reward, while the latter im-
proves the complexity of the algorithm, so we introduce the 02A
strategy. The model is used to select the action that minimizes the
cumulative reward of the agent in a given state. The model is es-
tablished based on a deep neural network and optimized by objec-
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Fig. 2. Process of state-based strategy.

tive function:

T-1

Z E(p[,a;)~na,j,,(s,),a[~n (s,)[)/[radv (st a;)] (4)
t

where g4, (S, a;) = —1(st, ar) and myy, means the O2A strategy.
The model’s input is the state, and the output is the optimal attack
action in the state and the probability that the action is selected.
The larger the p; is, the more important the attack action is. We
train the model by using the original action and state space, and
the parameters (s, aj, pe, Iqqy) are collected and updated in each
training to obtain the attack action and state space.

3.4. Process of algorithm

Taking the DQN agent as an example, the attack process can be
described as Algorithm 1: in line 1 we initialize the agent state.

Algorithm 1: ATS-O2A algorithm.
Input: Atari Environment, victim Agent T, m,4,,threshold
value A
Output: total reward R, attack rate, successful attack rate

1 Initialize state s;

2 for each episode do

3 | for each time step t and current episode is not done do
4 if c(t) > A then

5 ar = AgentAct (st );

6 execute a, get state S;,1;
7 ag1 = AgentAct(Sey1);

8 aé = Taqy(St);

9 execute a;, get state s/ ;;
10 a;,, = AgentAct(s;,,);

1 if a1 = a; , then

12 cancel attack;

13 set state Sy = S, 1;

14 end

15 end

16 perform next step

17 end

18 end

Then, in line 4 we use Eq. (2) to obtain the attack moment. The

Table 1

Structure of parameters of neural networks .
Layer In-channels  Out-channels  Kernel-size  Stride  Activation
Conv1 Any 32 8 4 RelLU
Conv2 32 64 4 2 ReLU
Conv3d 64 64 3 1 RelLU
FC - - - — Softmax

state at this moment is denoted as s;, and lines 5-6 indicate the
state after performing an action a; under normal conditions is
recorded as s;,q, and in line 7 the action selection of the agent
under state s, is denoted as a;,1. In lines 8-9 the state after ex-
ecuting the attack is recorded as s, +1» and in line 10 the action
selection of the agent in the state is recorded as a; +1- We compare
ag4q1 and a;H in line 11, if they are the same, the attack is invalid,
and we cancel the attack as shown in lines 12-13. Otherwise, we
consider the attack successful and continue in line 16.

4. Experiment and analysis

We evaluate the effectiveness of the proposed attack algorithm
on Atari game datasets. At the same time, to further evaluate the
effectiveness and stealthiness of the algorithm, a new measure-
ment index is proposed in this section.

4.1. Experiment

4.1.1. Agent training

The adversarial attack experiments based on DRL in this paper
take the DQN algorithm and A2C algorithm as examples. The spe-
cific parameters of the convolutional neural network are shown in
Table 1. Three convolutional layers and one fully connected layer
are used, and the convolutional layer is activated by the ReLU func-
tion. ‘Any’ denotes the channel number which is 3 for RGB im-
ages and 1 for gray images. During training, based on Pytorch! and
Tianshou? algorithm libraries, we used the DQNPolicy module and
A2CPolicy module in Tianshou, the discount factor is set to 0.99,

1 PyTorch is a Python-based scientific computing library and an open-source ma-
chine learning framework used for building neural networks.

2 Tianshou is a PyTorch-based reinforcement learning framework designed to pro-
vide efficient implementation and easy-to-use API.
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Table 2

Range of C(t) value in the first 20%.
Game Range of threshold
Pong (0.016,0.247)
Breakout (0.13,0.85)
Qbert (0.107,0.899)
MsPacman (0.10,0.22)
Spacelnvaders (0.046,0.261)

the learning rate is 0.0001, and the targeted network is updated
per 500 steps. The Normal Reward (NR) of the trained agent with
DQN and A2C under different games is shown in Table 3.

4.1.2. O2A strategy training

For attack strategy O2A, its principle is similar to the policy 7
in DRL. The difference is that the original reward corresponding
to each action is changed to a negative value, that is, the objec-
tive function is optimized in the direction of reward reduction. The
original state-action space is used as the training set during model
training. The goal of this strategy is to choose the action that re-
duces the overall reward the most in a given state. Take the game
of Pong as an example, the rule of the game is that the first one to
score 21 points wins. For the normal agent, the final reward should
be close to 21, but for the agent using 7y, the final result tends
to -21, which is exactly opposite to the goal of the normal agent.
In the training process, the original Atari game dataset in the gym
library is used as the training set, and the episode is set to 100.

4.1.3. Parameters of ATS function

For the ATS function, there are two problems to be solved: one
is how to set o and B, and the other is how to select the func-
tion threshold to ensure the attack effect. In order to solve this
problem, we restrict « + 8 =1, and define « € {0, 0.1, 0.2, 0.3,
04, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. In the Pong game, we recorded the
function results under each « value and selected all data to draw
the overall frequency distribution histogram. The results of the dis-
tribution frequency within 20% were taken as reference, and then
the function results under each value were individually drawn fre-
quency distribution histograms. By comparing the covariance be-
tween population and individual distribution, the final « value is
0.5. Then we got the threshold range of each game within the top
20% of C(t) value. The specific results are shown in Table 2. Ac-
cording to this table, the A values of five games are 0.016, 0.13,
0.107, 0.10 and 0.046.

4.14. Perturbation generation

In this paper, we selected three respective algorithms to gener-
ate perturbations:

CW: Carlini & Wagner (CW) attack algorithm (Carlini and Wag-
ner, 2017) is an optimization-based attack, which takes into ac-
count the two aspects of high attack accuracy and low adversarial
disturbance at the same time.

FGSM: Fast gradient sign method (FGSM) (Goodfellow et al.,
2015) is a gradient-based attack, which mainly finds the derivative
of the model with respect to the input to generate perturbations.

PGD: Project Gradient Descent (PGD) attack algorithm
(Madry et al, 2018) is the strongest first-order attack algo-
rithm at present. It performs several iterations, each iteration
generates a new perturbation and trims it to the specified range.

Considering the time complexity and algorithm effect, we set
the number of iterations of CW and PGD as 50 and set the epsilon
in FGSM as 0.1.
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0 25 s 75 10 15 150 0 25 s 75 100 125 150

before attack perturbation after attack

Fig. 3. Attack process (take Pong game as an example, the red arrow represents
the direction of action): The right player is the agent. Normally, the agent should
take downward action to ensure receiving the ball when the ball is close to it. After
executing the attack (that is, using the FGSM algorithm to add perturbation to the
observation to generate adversarial samples), the victim agent takes upward action,
thus failing to receive the ball. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

4.2. Experimental results and analysis

In order to verify the performance of the proposed algorithm,
we conduct experiments on five games: Pong, Breakout, Qbert,
MsPacman, and Spacelnvaders. We implemented Strategically-
Timed (ST) attack algorithm, Uniform (UN) attack algorithm (at-
tacks in a uniform distribution) and our algorithm ATS-02A,
recorded the total number of steps, attack times, attack frequency,
attack success rate, and cumulative reward. Figure 3 shows the at-
tack process of ATS-O2A.

According to traditional measures that only focus on cumulative
reward reduction, Table 3 records the minimum reward (average of
10 episodes) for each of the three attack algorithms in the experi-
ment based on FGSM. However, the three algorithms have different
attack frequencies and different attack success rates, it is not pos-
sible to directly measure the attack effect only by the change of
cumulative reward. We need a measurement index that compre-
hensively considers the attack frequency, attack success rate and
cumulative reward variation. In order to make a more intuitive
comparison, we take the difference between the attack success rate
and the attack frequency as the abscissa to represent the attack
stealthiness, namely:

A frequency = fouc — frotal (5)

where fq, represents attack success rate, and f;,, represents at-
tack frequency.

We take the difference between the maximum cumulative re-
ward of the normal agent and the minimum cumulative reward of
the victim as the maximum reward variation, and then the ratio
between the cumulative reward variation and the maximum re-
ward variation after executing the attack algorithm is used as the
ordinate to represent the attack effectiveness, namely:

_ max (Rnormal) - Rattacked (6)
max (Rnormal) — min (Rattacked)

where R,;mq represents normal reward of agent and Ry qckeq T€P-
resents reward after being attacked. According to different rules of
games, the min (Ryqckeq) value of Pong is -21, and O in the remain-
ing four games.

For an effective attack algorithm, the ideal attack effect is low
attack frequency, high attack success rate and large accumulative
reward variation. Therefore, we propose a measurement index F
composed of A frequency and AR to comprehensively evaluate the
stealthiness and effectiveness of the attack. The larger the F value,
the better the attack effect. The mathematical formula is expressed
as:

F = 0.5 x (A frequency + AR) (7)

We calculated the F values of uniform attack, strategically-timed
attack, and our attack algorithm under different attack frequencies

AR
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Table 3
Reward of DQN and A2C agents under different conditions.
Pong Breakout Qbert MsPacman Spacelnvaders
DQN A2C DQN A2C DQN A2C DQN A2C DQN  A2C
NR 21 21 349 400 5372 5445 1784 2236 719 906
UN -17 -18 0 0 200 150 380 320 260 260
ST -21 -21 1 2 0 75 350 270 145 210
ATS-02A  -21 -21 0 0 100 50 10 380 310 60
Table 4
F value records after attack.
Pong Breakout Qbert MsPacman Spacelnvaders
DQN A2C DQN A2C DQN A2C DQN A2C DQN A2C
UN+CW 0.371 0.426  0.637 0.498 0.576 0.514 0317 0432  0.285 0.246
UN+FGSM 0.611 0.593 0.621 0.609  0.629 0.630  0.526 0.481 0474  0.522
UN+PGD 0.653 0.677  0.712 0.705 0.693 0.683 0.550 0.560  0.555 0.576
ST+CW 0.822 0.364 0.573 0.320 0.785 0.212 0.644 0.030 0.308 0.117
ST+FGSM 0.587 0.359  0.779 0.372 0.481 0.377 0.550 0.027  0.360 0.224
ST+PGD 0.886  0.524 0.795 0.373 0.922 0.714  0.573 0393 0664 0.612
ATS-02A+CW 0.951 0.765 0977 0.653 0950 0.704 0.679 0384 0.687 0.411
ATS-02A+FGSM  0.861 0.553 0.886 0.609 0.650 0.641 0.631 0.193  0.510  0.400
ATS-02A+PGD 0.951 0.887 0.971 0.902 0947 0.884 0.677 0483 0718 0.618
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Fig. 4. Attack results using CW algorithm, (a) and (b) represent the attack results on the agents that trained with the five games under DQN and A2C, the abscissa represents
A frequency, and the ordinate represents AR, UN represents a uniform attack, ST represents a strategically timed attack, Ours represents our algorithm.

by using CW, FGSM and PGD to generate adversarial samples re-
spectively. All results are recorded in Table 4 after taking the mean
value, the higher the better. ST is a strategically-timed attack, UN
is a uniform attack, and Ours is our attack.

According to Table 4, we find that the performance of our al-
gorithm is better than uniform attack and strategically-timed at-
tack. Especially in Pong game and Breakout game, the F value of
our algorithm combined with PGD algorithm on DQN is 0.951 and
0.971 respectively, and the F value combined with the CW algo-
rithm is 0.951 and 0.977 respectively, which is much higher than
other algorithms. Although the performance of our attack algo-
rithm in the MsPacman game on A2C agent is slightly lower than
that of uniform attack, the overall results show that the F value
of our algorithm for the five games has been improved to vary-
ing degrees. In addition, Figure 4 shows the results of the uniform
attack, strategically-timed attack, and our attack algorithm respec-
tively combined with CW algorithm.

In Fig. 4, when the A frequency and AR are larger, it means
that the attack frequency is lower, the attack success rate is higher,
and the cumulative reward decreases more. We find that our algo-
rithm curves are generally above the results of strategically-timed

attacks and uniform attacks except on the A2C agent of MsPacman.
In Fig. 4(a), uniform attack performs worse than the strategically-
timed attack on the whole, while in Fig. 4(b), it is the opposite. At
the same time, the A frequency and AR of our algorithm in Pong,
Breakout and Qbert are close to 1 in Fig. 4(a). It means that the at-
tack success rate of our algorithm is much higher than the attack
frequency, and the attack times are greatly reduced while guaran-
teeing the attack effect, which further illustrates the effectiveness
and stealthiness of the algorithm. In attacks against A2C agents,
the A frequency of most games are in (0,0.6). Although there are
cases in Qbert games that are greater than 0.6, the overall per-
formance is still slightly lower than attacks against DQN agents.
We analyze one of the reasons is that the robustness of A2C al-
gorithm is higher than that of the DQN algorithm. At the same
time, by comparing the above figures, we can see that our algo-
rithm has higher performance under the same AR. In the attack in
Pong, Breakout, and Qbert, our algorithm AR is distributed around
1, which is greatly improved compared to the strategically-timed
attack and uniform attack. Therefore, according to the above anal-
ysis, the performance of our algorithm is better than the other two
algorithms.
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5. Discussion

In this paper we focus on the vulnerability of the well-trained
deep reinforcement learning model, which means that the model
may exist some threats we don’t know. The attacker explores and
exploits the vulnerability before any information about the vul-
nerability has been released. So our algorithm ATS-O2A is essen-
tially similar to zero-day attack (Sayed et al., 2023). Compared with
other attack algorithms like UN and ST, ATS-O2A has shown good
performance by selecting the critical attack moment and inducing
the agent to perform actions that have the greatest impact on the
long-term reward.

Moreover, there are still several limitations in our study regard-
ing the use of adversarial examples in DRL. On the one hand, our
algorithm ATS-02A is a white-box attack, which requires the at-
tacker to access the state space and action space. On the other
hand, training the O2A strategy will be more difficult if the tar-
geted agent has a complex state and action space.

6. Conclusions and future works

In this paper, we proposed an attack algorithm ATS-O2A aimed
at DRL which ensures both effectiveness and stealthiness. Accord-
ing to experimental results, the attack success rate of the ATS-02A
is significantly improved and over 90% in most cases. Compared
with the same effect of the strategically-timed attack, the time
stealthiness of the attack algorithm is greatly improved. And we
proposed a new measure index F to show the effectiveness and
stealthiness of attack. We found the F value of the ATS-O2A is
obviously larger than the strategically-timed attack algorithm and
uniform attack algorithm in most cases. Especially in Pong and
Breakout games, the F value is almost near 1, which means that
only in a few steps the agent will be confused and eventually fail.
The results proved the effectiveness and stealthiness of ATS-02A.

Based on the completed work in this paper, we have verified
the vulnerability of the DRL. In order to improve the robustness
and security of DRL algorithms, we plan to explore the following
aspects in the future: (1) To defend the observation-based attack,
we consider improving the upper bound of anti-interference and
design a denoising model, which will enhance the robustness of
DRL. (2) In this paper we mainly focus on theory while DRL has
been applied in many tasks, such as autonomous navigation and
robot control. Thus, we plan to deploy our algorithm in those tasks
to explore more characteristics.
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