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a b s t r a c t 

In recent years, deep reinforcement learning has been widely applied in many decision-making tasks re- 

quiring high safety and security due to its excellent performance. However, if an adversary attacks when 

the agent making critical decisions, it is bound to bring disastrous consequences because humans cannot 

detect it. Therefore, it is necessary to study adversarial attacks against deep reinforcement learning to 

help researchers design highly robust and secure algorithms and systems. In this paper, we proposed an 

attack method based on Attack Time Selection (ATS) function and Optimal Attack Action (O2A) strategy, 

named ATS-O2A. We select the critical attack moment through the ATS function, and then combine the 

state-based strategy with the O2A strategy to select the optimal attack action which has profound influ- 

ence as targeted action, finally we launch an attack by making targeted adversarial examples. In order to 

measure the stealthiness and effectiveness of the attack, we designed a new measurement index. Exper- 

iments show that our method can effectively reduce unnecessary attacks and improve the efficiency of 

attacks. 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

Since Deep Reinforcement Learning (DRL) has surpassed the hu- 

an level on the Atari game platform ( Mnih et al., 2015 ), the re-

earch on the DRL algorithm has developed rapidly. It has been 

idely applied in digital games ( Lample and Chaplot, 2017 ), robot 

ontrol ( Tai et al., 2017 ), and other fields in the past few years. Re-

nforcement Learning (RL) is defined as a learning process that at- 

empts to find the best action based on the information that an in- 

ividual observes when interacting with the surrounding environ- 

ent. As a combination of deep learning and reinforcement learn- 

ng, DRL is an end-to-end perceptual control system. The agent 

earns the optimal behavior by interacting with the environment, 

hich can be expressed as Markov Decision Process (MDP). In gen- 

ral, it can be interpreted by a tuple < S, A, P, R, γ > , where S is

he state space, A is the action space, P : S × A × S → [0 , 1] is the

ransition probability, R denotes the reward, and γ ∈ [0 , 1) is the 

iscount factor. At each time step, the current state of the agent 

an be represented as s t , and then it will select action a t to en-

er the next state s t+1 according to the policy network π , where 

he policy π(s t , a t ) ∈ [0 , 1] represents the possibility of choosing

n action and can also directly output the optimal action in the 
∗ Corresponding author. 
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tate. r(s t , a t ) represents the immediate reward after executing the 

ction a t . The goal of the agent is to learn an optimal strategy to

aximize the final reward R , which can be interpreted as: 

 = 

T −1 ∑ 

t 

E π(s t ,a t ) [ γ
t r(s t , a t )] (1) 

Nowadays DRL is widely used in decision-making tasks with 

igh security and stability. However, researchers have proved the 

ulnerability of Deep Neural Networks (DNN) ( Su et al., 2019 ). Al- 

hough DRL shows good performance, the combination of deep 

earning inevitably leads it to certain vulnerabilities. When brings 

onvenience to other fields, it also causes security problems and 

here are many works around how to defend against attack, 

uch as quantum encryption ( Ni et al., 2022 ) in the commu- 

ication field. Therefore, it’s necessary to study the vulnerabil- 

ty to design more robust and secure algorithms and systems. 

n 2014, Goodfellow et al. (2015) proposed Fast Gradient Sign 

ethod (FGSM) to generate perturbation on neural networks, 

hich provided ideas for subsequent adversarial attacks against 

RL. Huang et al. (2017) who was the first one to add perturba- 

ions generated by FGSM to the observation for the attack, but they 

id not consider the high correlation between states and actions 

n continuous time in DRL. What’s more their method attacks at 

ach time step and ignores the effectiveness and stealthiness of ad- 

ersarial attacks. Therefore, Lin et al. (2017) proposed strategically- 

imed attack and enchanting attack. The former reduces the num- 

https://doi.org/10.1016/j.cose.2023.103259
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2023.103259&domain=pdf
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er of attacks to about 25% of the total time but without consider- 

ng the global reward. 

In order to verify the vulnerability of the DRL model by using a 

ore effective and stealthy method, in this paper, we proposed an 

ttack strategy based on the Attack Time Selection (ATS) function 

nd Optimal Attack Action (O2A), named ATS-O2A. The attack algo- 

ithm mainly focuses on two problems: when to attack and how to 

ttack. We introduced Attack Time Selection (ATS) function, State- 

ased strategy, and Optimal Attack Action (O2A) strategy, the first 

wo are used to detect whether the attack is critical and has an 

mpact on the agent’s state, while the last considers the impact of 

ttack action on the total reward. 

Using this method, the attacker can achieve an ideal attack ef- 

ect with the least number of attacks, while ensuring stealthiness 

nd effectiveness. We deployed the proposed attack algorithm on 

tari game agent trained by Deep Q-Network (DQN) ( Mnih et al., 

015 ) and Advantage Actor-critic (A2C) ( Mnih et al., 2016 ) respec- 

ively, and proved the superiority of our algorithm compared with 

ther algorithms through experiments. The key contributions of 

his paper are as follows: 

• Proposed the attack time selection function which improves the 

stealthiness of the attack by measuring the importance of the 

current moment. 
• Proposed optimal attack action strategy which considers imme- 

diate reward and total reward to improve the effectiveness of 

the attack. 
• Introduced the state-based strategy by comparing the next state 

action of the normal agent and attacked agent, which deter- 

mines whether the attack is effective. 
• Proposed a new attack effect measurement index by compre- 

hensively considering attack frequency, attack success rate and 

cumulative reward change. 

The rest of the paper is organized as follows. Section 2 re- 

iews the current adversarial attack on DRL. Section 3 describes 

he proposed method. Section 4 presents the details of experiment 

nd analyses the results. Section 5 discusses the mechanism and 

erformance of the algorithm. Section 6 concludes the paper and 

raws the future work. 

. Literature review 

Adversarial attack refers to the deliberate manipulation of ma- 

hine learning models by attackers through specially crafted in- 

ut samples to deceive or mislead the models. With the rapid 

evelopment of deep learning, attackers are constantly exploring 

ew attack methods, including using poisoning attacks ( Chen and 

oushanfar, 2022 ), adversarial machine learning ( Hernández-Castro 

t al., 2022; Zizzo et al., 2019 ), and other technologies ( Song et al.,

019; Wenger et al., 2021 ), making the effects of adversarial at- 

ack increasingly difficult to detect and defend. Poisoning attacks 

ainly occur in the training stage which can reduce performance 

nd reliability by using harmful data. Similarly, in DRL the attacker 

anipulates the input data during the training stage thus introduc- 

ng a prediction bias to the model. The aim of adversarial machine 

earning is to improve robustness and security by studying poten- 

ial attacks and threats. These methods are essentially the same 

s the attacks on DRL. Especially, in this paper, we will study the 

ulnerability of the DRL model which is mainly based on the ad- 

ersarial machine learning method. 

Adversarial attacks in the field of DRL can be divided into 

eward-based attack ( Zhang et al., 2020 ), strategy-based attack 

 Behzadan and Hsu, 2019; Behzadan and Munir, 2017; Kos and 

ong, 2017; Mo et al., 2023 ), observation-based attack ( Hussenot 

t al., 2020; Li et al., 2022; Lin et al., 2017; Sun et al., 2020 ),

nvironment-based attack ( Bai et al., 2018; Chen et al., 2018 ) and 
2 
ction-based attack ( Lee et al., 2020 ) according to algorithm princi- 

le. Reward-based attack refers to modifying the reward signal of 

nvironment feedback, which can either directly modify the sign 

f reward value or replace the original reward function with an 

dversarial reward function. Strategy-based attack refers to the use 

f adversarial agents to generate states and behaviors beyond the 

ictim agent’s understanding ability, and then cause the victim 

gent to enter a chaotic state. Observation-based attack refers to 

he attacker adding perturbation to the observed image to make 

he victim agent execute the action expected by the attacker. This 

s usually achieved by adding perturbations to the image sensor 

f the agent. Environmental-based attack refers to modifying the 

raining environment of the agent directly, mainly by modifying 

he dynamic model of the environment and adding obstacles to it. 

ction-based attack refers to directly modifying the action output, 

hich can be implemented by modifying the action space in the 

raining data. In this paper, we focus on observation-based attack. 

In observation-based attack, the attacker adds appropriate per- 

urbation to the observation image at a certain time to mislead the 

gent to make a wrong choice. While ensuring stealthiness, the 

umulative reward is minimized, and the final state of the agent 

ven be changed. At present, the research mainly focuses on re- 

ucing the frequency of attacks. In the study of Lin et al. (2017) ,

trategically-timed attack reduces the frequency of attacks to some 

xtent by calculating the action probability difference of each step. 

owever, it only considers the attack effect at the current moment 

nd ignores the impact of the current attack on the subsequent 

tates and the final attack effect. And in the enchanting attack, al- 

hough it considers the final target and global optimization of the 

ttack, it is difficult to predict the states and actions in a long time 

ange thus causing a low success rate. Sun et al. (2020) proposed 

ritical point attack and antagonistic attack. But they both limit at- 

ack moments and ignore future critical moments. And the selec- 

ion of attack action sequences in critical point attack needs to be 

xhaustive, which improves the time complexity. 

Different from traditional adversarial attack methods of gener- 

ting adversarial examples, Gu et al. (2017) proposed to launch the 

dversarial attack by implanting a backdoor and changing model 

arameters, resulting in the wrong output of the neural network. 

ased on the above background, Kiourti et al. (2020) proposed 

he backdoor attack and Rakhsha et al. (2020) proposed an en- 

ironment poisoning attack against DRL. However, these methods 

eed to poison a large number of states in the training process to 

chieve the gap in performance, and need to be further optimized. 

t the same time, all the above algorithms directly measure the 

ttack effect by the variation of reward, without considering the 

nternal relationship among attack frequency, attack success rate 

nd the variation of cumulative reward. 

Based on the above problems, we proposed an algorithm that 

ses ATS function and state-based strategy to control the number 

f attacks and uses O2A strategy to attack at the selected critical 

oment. In addition, in order to comprehensively evaluate the at- 

ack effect, we proposed a new measurement index F , and the ex- 

eriment proved that the comprehensive performance of our pro- 

osed attack algorithm is better. 

. Methodology 

In DRL, the agent interacts with the environment through a se- 

ies of operations, each of which changes the corresponding state. 

ompared with other forms of adversarial attacks, adversarial at- 

acks oriented to DRL need to consider the influence of actions 

n subsequent states and analyze whether to add perturbation to 

ach state and the possible influence. At the same time, the goal 

s to reduce the total reward, and even mislead the agent into a 

angerous state, which is different from the ordinary attack that 



X. Li, Y. Li, Z. Feng et al. Computers & Security 129 (2023) 103259 

Fig. 1. Process of attack based on observation. Step 1: The victim agent receives an observation x from the environment and sets it as the current state. Step 2: The 

victim agent outputs an action according to policy π at the normal state. Step 3: The attacker gets the output and crafts an adversarial example x ′ by At t function to the 

environment. Step 4: The victim agent receives x ′ and sets it as the current state. Step 5: The victim agent selects the wrong action a ′ at attacked state. Step 6: The victim 

agent receives a reward after executing a ′ . 
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ims to reduce the classification accuracy. In contrast, tasks in DRL 

re more complex and specific, requiring a set of highly correlated 

ction predictions. The adversary needs to change the final goal 

f the agent, rather than simply mislead the action of one step. 

hat’s more, an attack on DRL requires that, in addition to inject- 

ng a subtle perturbation into the input, it also causes damage to 

he entire process. Figure 1 shows the process in which an attacker 

dds perturbations to the agent’s observations to make it select the 

rong action. 

For adversarial attacks oriented to DRL, there are two main 

roblems: when to attack and how to attack (i.e. how to make 

dversarial examples). By analyzing the advantages and disadvan- 

ages of existing algorithms, we propose a method to select the 

ritical attack moment using the ATS function, select the targeted 

ction using πadv obtained by O2A strategy and then analyze 

hether to attack through the state-based strategy. The core of the 

lgorithm is mainly composed of three parts: ATS function, state- 

ased strategy and O2A strategy. 

.1. ATS function 

The DRL algorithm based on policy gradient mainly parameter- 

zes the policy π , calculates the policy gradient about the action, 

nd then adjusts the action along the direction of the gradient to 

et the optimal policy gradually. Its output π(a | s ) = p[ a | s, θ ] indi-

ates that when the state is s , the action a satisfies a certain prob-

bility distribution of the parameter θ . Thus, we select the criti- 

al moment by measuring the action probability distribution of the 

gent output in a certain state, and the function can be expressed 

s: 

(t) = α(πmax − πmin ) + β(πmax − π) > � (2) 

here πmax , πmin and π respectively denote the maximum value, 

he minimum value and the average value of the output action 

robability in a given state, α and β are two parameters which 

atisfy α + β = 1 , and � is the threshold value. For value function- 

ased DRL algorithms such as DQN, DNN is mainly used to ap- 

roximate the reward value function, and the Q value represents 

he value distribution of the action in this state. In this paper, the 

 value needs to be processed by the softmax function first, and 

hen the function can be expressed as: 

(t) = α( max �(Q(s t , a t )) − min �(Q(s t , a t ))) 

+ β( max �(Q(s t , a t )) − �(Q(s t , a t ))) > � (3) 

here �(Q(s t , a t )) means normalizing the Q value by softmax 

unction (temperature coefficient T is 1 in the experiment), � is 

he average value of the function. 
3 
The function is composed of two parts, the first part repre- 

ents the preference degree of the agent to a certain action in a 

iven state, and the second part represents the difference among 

he probability of all actions. The larger value of C(t) , the greater 

reference of this moment for a certain action, and the more criti- 

al the moment is. On the contrary, it means that the difference in 

ction probability at this moment is smaller, so it cannot be used 

s the critical attack moment. Through this function, we can select 

he most critical moment to ensure that as few attacks as possible 

nd achieve efficient attack, so as to ensure the time stealthiness 

f the attack algorithm. Since α and β are unknown, we designed 

 preliminary experiment to determine the values of two parame- 

ers. 

.2. State-based model 

The model is used to judge whether an attack has a long-time 

mpact on the subsequent states of the agent. We consider that if 

ubsequent state and behavior after the attack are not changed, it 

eans that the attack has little influence on the agent, and the cu- 

ulative reward may not have any influence on the final state al- 

hough it decreases. In order to improve the effectiveness of each 

ttack, we restrict the number of attacks based on state strategy, 

o as to ensure that a single attack can have a profound impact 

n the agent. The specific process is shown in Fig. 2 : when an at-

acking moment is selected, the state is recorded as s t . Normally, 

s the solid line shows, the agent will execute a t and update state 

o s t+1 where its next normal action is a t+1 . Then the red dotted 

ine represents the attack process. The attacker will generate a per- 

urbation δ and craft an adversarial example that can change the 

nput state to s ′ t and mislead the agent to state s ′ t+1 by selecting 

argeted action a ′ t . The next normal action of state s ′ 
t+1 

is a ′ 
t+1 

. At

ast the attacker will compare a t+1 and a ′ 
t+1 

. If they are different, 

t means that both the state and behavior of the agent are affected 

nd the attack is effective. Otherwise, the attack will be canceled. 

.3. O2A strategy 

In traditional attack algorithms, targeted actions are usually se- 

ected by suboptimal actions given by the policy function or ac- 

ions in the action sequence generated by exhaustive. The former 

as little effect on the cumulative reward, while the latter im- 

roves the complexity of the algorithm, so we introduce the O2A 

trategy. The model is used to select the action that minimizes the 

umulative reward of the agent in a given state. The model is es- 

ablished based on a deep neural network and optimized by objec- 
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Fig. 2. Process of state-based strategy. 
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Table 1 

Structure of parameters of neural networks . 

Layer In-channels Out-channels Kernel-size Stride Activation 

Conv1 Any 32 8 4 ReLU 

Conv2 32 64 4 2 ReLU 

Conv3 64 64 3 1 ReLU 

FC — — — — Softmax 

s

s
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e

s  

a  

a

c
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e

m

4

4

t
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a

t

a

T

A

1 PyTorch is a Python-based scientific computing library and an open-source ma- 

chine learning framework used for building neural networks. 
2 Tianshou is a PyTorch-based reinforcement learning framework designed to pro- 

vide efficient implementation and easy-to-use API. 
ive function: 

 −1 
 

t 

E (p t ,a ′ t ) ∼πadv (s t ) ,a t ∼π(s t ) [ γ
t r adv (s t , a 

′ 
t )] (4) 

here r adv (s t , a 
′ 
t ) = −r(s t , a t ) and πadv means the O2A strategy.

he model’s input is the state, and the output is the optimal attack 

ction in the state and the probability that the action is selected. 

he larger the p t is, the more important the attack action is. We 

rain the model by using the original action and state space, and 

he parameters (s t , a 
′ 
t , p t , r adv ) are collected and updated in each

raining to obtain the attack action and state space. 

.4. Process of algorithm 

Taking the DQN agent as an example, the attack process can be 

escribed as Algorithm 1 : in line 1 we initialize the agent state. 

Algorithm 1: ATS-O2A algorithm. 

Input : Atari Environment, victim Agent T , πadv ,threshold 

value �

Output : total reward R , attack rate, successful attack rate 

1 Initialize state s ; 

2 for each episode do 

3 for each time step t and current episode is not done do 

4 if c(t) > � then 

5 a t = Agent Act (s t ) ; 

6 execute a t , get state s t+1 ; 

7 a t+1 = Agent Act (s t+1 ) ; 

8 a ′ t = πadv (s t ) ; 

9 execute a ′ t , get state s ′ t+1 ; 

10 a ′ 
t+1 

= Agent Act (s ′ 
t+1 

) ; 

11 if a t+1 = a ′ 
t+1 

then 

12 cancel attack; 

13 set state s t = s t+1 ; 

14 end 

15 end 

16 perform next step 

17 end 

18 end 

hen, in line 4 we use Eq. (2) to obtain the attack moment. The
4

tate at this moment is denoted as s t , and lines 5–6 indicate the 

tate after performing an action a t under normal conditions is 

ecorded as s t+1 , and in line 7 the action selection of the agent

nder state s t+1 is denoted as a t+1 . In lines 8–9 the state after ex-

cuting the attack is recorded as s ′ 
t+1 

, and in line 10 the action 

election of the agent in the state is recorded as a ′ 
t+1 

. We compare

 t+1 and a ′ t+1 in line 11, if they are the same, the attack is invalid,

nd we cancel the attack as shown in lines 12–13. Otherwise, we 

onsider the attack successful and continue in line 16. 

. Experiment and analysis 

We evaluate the effectiveness of the proposed attack algorithm 

n Atari game datasets. At the same time, to further evaluate the 

ffectiveness and stealthiness of the algorithm, a new measure- 

ent index is proposed in this section. 

.1. Experiment 

.1.1. Agent training 

The adversarial attack experiments based on DRL in this paper 

ake the DQN algorithm and A2C algorithm as examples. The spe- 

ific parameters of the convolutional neural network are shown in 

able 1 . Three convolutional layers and one fully connected layer 

re used, and the convolutional layer is activated by the ReLU func- 

ion. ‘Any’ denotes the channel number which is 3 for RGB im- 

ges and 1 for gray images. During training, based on Pytorch 

1 and 

ianshou 

2 algorithm libraries, we used the DQNPolicy module and 

2CPolicy module in Tianshou, the discount factor is set to 0.99, 
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Table 2 

Range of C(t) value in the first 20% . 

Game Range of threshold 

Pong (0.016,0.247) 

Breakout (0.13,0.85) 

Qbert (0.107,0.899) 

MsPacman (0.10,0.22) 

SpaceInvaders (0.046,0.261) 
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Fig. 3. Attack process (take Pong game as an example, the red arrow represents 

the direction of action): The right player is the agent. Normally, the agent should 

take downward action to ensure receiving the ball when the ball is close to it. After 

executing the attack (that is, using the FGSM algorithm to add perturbation to the 

observation to generate adversarial samples), the victim agent takes upward action, 

thus failing to receive the ball. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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he learning rate is 0.0 0 01, and the targeted network is updated 

er 500 steps. The Normal Reward (NR) of the trained agent with 

QN and A2C under different games is shown in Table 3 . 

.1.2. O2A strategy training 

For attack strategy O2A, its principle is similar to the policy π
n DRL. The difference is that the original reward corresponding 

o each action is changed to a negative value, that is, the objec- 

ive function is optimized in the direction of reward reduction. The 

riginal state-action space is used as the training set during model 

raining. The goal of this strategy is to choose the action that re- 

uces the overall reward the most in a given state. Take the game 

f Pong as an example, the rule of the game is that the first one to

core 21 points wins. For the normal agent, the final reward should 

e close to 21, but for the agent using πadv , the final result tends

o -21, which is exactly opposite to the goal of the normal agent. 

n the training process, the original Atari game dataset in the gym 

ibrary is used as the training set, and the episode is set to 100. 

.1.3. Parameters of ATS function 

For the ATS function, there are two problems to be solved: one 

s how to set α and β , and the other is how to select the func-

ion threshold to ensure the attack effect. In order to solve this 

roblem, we restrict α + β = 1 , and define α ∈ { 0, 0.1, 0.2, 0.3,

.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 } . In the Pong game, we recorded the

unction results under each α value and selected all data to draw 

he overall frequency distribution histogram. The results of the dis- 

ribution frequency within 20% were taken as reference, and then 

he function results under each value were individually drawn fre- 

uency distribution histograms. By comparing the covariance be- 

ween population and individual distribution, the final α value is 

.5. Then we got the threshold range of each game within the top 

0% of C(t) value. The specific results are shown in Table 2 . Ac-

ording to this table, the � values of five games are 0.016, 0.13, 

.107, 0.10 and 0.046. 

.1.4. Perturbation generation 

In this paper, we selected three respective algorithms to gener- 

te perturbations: 

CW: Carlini & Wagner (CW) attack algorithm ( Carlini and Wag- 

er, 2017 ) is an optimization-based attack, which takes into ac- 

ount the two aspects of high attack accuracy and low adversarial 

isturbance at the same time. 

FGSM: Fast gradient sign method (FGSM) ( Goodfellow et al., 

015 ) is a gradient-based attack, which mainly finds the derivative 

f the model with respect to the input to generate perturbations. 

PGD: Project Gradient Descent (PGD) attack algorithm 

 Madry et al., 2018 ) is the strongest first-order attack algo- 

ithm at present. It performs several iterations, each iteration 

enerates a new perturbation and trims it to the specified range. 

Considering the time complexity and algorithm effect, we set 

he number of iterations of CW and PGD as 50 and set the epsilon

n FGSM as 0.1. 
5 
.2. Experimental results and analysis 

In order to verify the performance of the proposed algorithm, 

e conduct experiments on five games: Pong, Breakout, Qbert, 

sPacman, and SpaceInvaders. We implemented Strategically- 

imed (ST) attack algorithm, Uniform (UN) attack algorithm (at- 

acks in a uniform distribution) and our algorithm ATS-O2A, 

ecorded the total number of steps, attack times, attack frequency, 

ttack success rate, and cumulative reward. Figure 3 shows the at- 

ack process of ATS-O2A. 

According to traditional measures that only focus on cumulative 

eward reduction, Table 3 records the minimum reward (average of 

0 episodes) for each of the three attack algorithms in the experi- 

ent based on FGSM. However, the three algorithms have different 

ttack frequencies and different attack success rates, it is not pos- 

ible to directly measure the attack effect only by the change of 

umulative reward. We need a measurement index that compre- 

ensively considers the attack frequency, attack success rate and 

umulative reward variation. In order to make a more intuitive 

omparison, we take the difference between the attack success rate 

nd the attack frequency as the abscissa to represent the attack 

tealthiness, namely: 

f requency = f suc − f total (5) 

here f suc represents attack success rate, and f total represents at- 

ack frequency. 

We take the difference between the maximum cumulative re- 

ard of the normal agent and the minimum cumulative reward of 

he victim as the maximum reward variation, and then the ratio 

etween the cumulative reward variation and the maximum re- 

ard variation after executing the attack algorithm is used as the 

rdinate to represent the attack effectiveness, namely: 

R = 

max (R normal ) − R attacked 

max (R normal ) − min (R attacked ) 
(6) 

here R normal represents normal reward of agent and R attacked rep- 

esents reward after being attacked. According to different rules of 

ames, the min (R attacked ) value of Pong is -21, and 0 in the remain- 

ng four games. 

For an effective attack algorithm, the ideal attack effect is low 

ttack frequency, high attack success rate and large accumulative 

eward variation. Therefore, we propose a measurement index F 

omposed of � f requency and �R to comprehensively evaluate the 

tealthiness and effectiveness of the attack. The larger the F value, 

he better the attack effect. The mathematical formula is expressed 

s: 

 = 0 . 5 × (� f requency + �R ) (7) 

e calculated the F values of uniform attack, strategically-timed 

ttack, and our attack algorithm under different attack frequencies 
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Table 3 

Reward of DQN and A2C agents under different conditions. 

Pong Breakout Qbert MsPacman SpaceInvaders 

DQN A2C DQN A2C DQN A2C DQN A2C DQN A2C 

NR 21 21 349 400 5372 5445 1784 2236 719 906 

UN -17 -18 0 0 200 150 380 320 260 260 

ST -21 -21 1 2 0 75 350 270 145 210 

ATS-O2A -21 -21 0 0 100 50 10 380 310 60 

Table 4 

F value records after attack. 

Pong Breakout Qbert MsPacman SpaceInvaders 

DQN A2C DQN A2C DQN A2C DQN A2C DQN A2C 

UN + CW 0.371 0.426 0.637 0.498 0.576 0.514 0.317 0.432 0.285 0.246 

UN + FGSM 0.611 0.593 0.621 0.609 0.629 0.630 0.526 0.481 0.474 0.522 

UN + PGD 0.653 0.677 0.712 0.705 0.693 0.683 0.550 0.560 0.555 0.576 

ST + CW 0.822 0.364 0.573 0.320 0.785 0.212 0.644 0.030 0.308 0.117 

ST + FGSM 0.587 0.359 0.779 0.372 0.481 0.377 0.550 0.027 0.360 0.224 

ST + PGD 0.886 0.524 0.795 0.373 0.922 0.714 0.573 0.393 0.664 0.612 

ATS-O2A + CW 0.951 0.765 0.977 0.653 0.950 0.704 0.679 0.384 0.687 0.411 

ATS-O2A + FGSM 0.861 0.553 0.886 0.609 0.650 0.641 0.631 0.193 0.510 0.400 

ATS-O2A + PGD 0.951 0.887 0.971 0.902 0.947 0.884 0.677 0.483 0.718 0.618 

Fig. 4. Attack results using CW algorithm, (a) and (b) represent the attack results on the agents that trained with the five games under DQN and A2C, the abscissa represents 

� f requency , and the ordinate represents �R , UN represents a uniform attack, ST represents a strategically timed attack, Ours represents our algorithm. 
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a

y using CW, FGSM and PGD to generate adversarial samples re- 

pectively. All results are recorded in Table 4 after taking the mean 

alue, the higher the better. ST is a strategically-timed attack, UN 

s a uniform attack, and Ours is our attack. 

According to Table 4 , we find that the performance of our al- 

orithm is better than uniform attack and strategically-timed at- 

ack. Especially in Pong game and Breakout game, the F value of 

ur algorithm combined with PGD algorithm on DQN is 0.951 and 

.971 respectively, and the F value combined with the CW algo- 

ithm is 0.951 and 0.977 respectively, which is much higher than 

ther algorithms. Although the performance of our attack algo- 

ithm in the MsPacman game on A2C agent is slightly lower than 

hat of uniform attack, the overall results show that the F value 

f our algorithm for the five games has been improved to vary- 

ng degrees. In addition, Figure 4 shows the results of the uniform 

ttack, strategically-timed attack, and our attack algorithm respec- 

ively combined with CW algorithm. 

In Fig. 4 , when the � f requency and �R are larger, it means 

hat the attack frequency is lower, the attack success rate is higher, 

nd the cumulative reward decreases more. We find that our algo- 

ithm curves are generally above the results of strategically-timed 
6 
ttacks and uniform attacks except on the A2C agent of MsPacman. 

n Fig. 4 (a), uniform attack performs worse than the strategically- 

imed attack on the whole, while in Fig. 4 (b), it is the opposite. At

he same time, the � f requency and �R of our algorithm in Pong, 

reakout and Qbert are close to 1 in Fig. 4 (a). It means that the at-

ack success rate of our algorithm is much higher than the attack 

requency, and the attack times are greatly reduced while guaran- 

eeing the attack effect, which further illustrates the effectiveness 

nd stealthiness of the algorithm. In attacks against A2C agents, 

he � f requency of most games are in (0,0.6). Although there are 

ases in Qbert games that are greater than 0.6, the overall per- 

ormance is still slightly lower than attacks against DQN agents. 

e analyze one of the reasons is that the robustness of A2C al- 

orithm is higher than that of the DQN algorithm. At the same 

ime, by comparing the above figures, we can see that our algo- 

ithm has higher performance under the same �R . In the attack in 

ong, Breakout, and Qbert, our algorithm �R is distributed around 

, which is greatly improved compared to the strategically-timed 

ttack and uniform attack. Therefore, according to the above anal- 

sis, the performance of our algorithm is better than the other two 

lgorithms. 
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. Discussion 

In this paper we focus on the vulnerability of the well-trained 

eep reinforcement learning model, which means that the model 

ay exist some threats we don’t know. The attacker explores and 

xploits the vulnerability before any information about the vul- 

erability has been released. So our algorithm ATS-O2A is essen- 

ially similar to zero-day attack ( Sayed et al., 2023 ). Compared with 

ther attack algorithms like UN and ST, ATS-O2A has shown good 

erformance by selecting the critical attack moment and inducing 

he agent to perform actions that have the greatest impact on the 

ong-term reward. 

Moreover, there are still several limitations in our study regard- 

ng the use of adversarial examples in DRL. On the one hand, our 

lgorithm ATS-O2A is a white-box attack, which requires the at- 

acker to access the state space and action space. On the other 

and, training the O2A strategy will be more difficult if the tar- 

eted agent has a complex state and action space. 

. Conclusions and future works 

In this paper, we proposed an attack algorithm ATS-O2A aimed 

t DRL which ensures both effectiveness and stealthiness. Accord- 

ng to experimental results, the attack success rate of the ATS-O2A 

s significantly improved and over 90 % in most cases. Compared 

ith the same effect of the strategically-timed attack, the time 

tealthiness of the attack algorithm is greatly improved. And we 

roposed a new measure index F to show the effectiveness and 

tealthiness of attack. We found the F value of the ATS-O2A is 

bviously larger than the strategically-timed attack algorithm and 

niform attack algorithm in most cases. Especially in Pong and 

reakout games, the F value is almost near 1, which means that 

nly in a few steps the agent will be confused and eventually fail. 

he results proved the effectiveness and stealthiness of ATS-O2A. 

Based on the completed work in this paper, we have verified 

he vulnerability of the DRL. In order to improve the robustness 

nd security of DRL algorithms, we plan to explore the following 

spects in the future: (1) To defend the observation-based attack, 

e consider improving the upper bound of anti-interference and 

esign a denoising model, which will enhance the robustness of 

RL. (2) In this paper we mainly focus on theory while DRL has 

een applied in many tasks, such as autonomous navigation and 

obot control. Thus, we plan to deploy our algorithm in those tasks 

o explore more characteristics. 
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