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Routing methods in capsule networks often learn a hierarchical relationship for capsules in successive
layers, but the intra-relation between capsules in the same layer is less studied, while this intra-relation
is a key factor for the semantic understanding in text data. Therefore, in this paper, we introduce a
new capsule network with graph routing to learn both relationships, where capsules in each layer
are treated as the nodes of a graph. We investigate strategies to yield adjacency and degree matrix
with three different distances from a layer of capsules, and propose the graph routing mechanism
between those capsules. We validate our approach on five text classification datasets, and our findings
suggest that the approach combining bottom-up routing and top-down attention performs the best.
Such an approach demonstrates generalization capability across datasets. Compared to the state-of-
the-art routing methods, the improvements in accuracy in the five datasets we used were 0.82, 0.39,
0.07, 1.01, and 0.02, respectively.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Since capsule networks were proposed, they have been suc-
essfully applied in image processing (Hinton, Krizhevsky, &
ang, 2011; Sabour, Frosst, & Hinton, 2017). In recent years, a

ot of works have appeared that also adopted capsule networks
or text classification. For example, Zhao et al. (2018) investigate
he effectiveness of capsule networks in small data settings,
hile Ren and Lu (2018) introduce a variant of capsule networks
ith deep compositional code learning in text classification. The
uccess of capsule networks mainly relies on a bottom-up mech-
nism, namely routing by agreement (Sabour et al., 2017; Sabour,
rosst, & Hinton, 2018), which routes low-level capsules to high-
evel capsules in order to learn hierarchical relationships between
ayers. This mechanism helps capsule networks capture spatial
eatures well.

However, there are problems in applying capsule networks
o text data. Generally, these routing algorithms do not account
or the intra-relationships between capsules in each layer, while
hese intra-relationships exist in text data usually. For exam-
le, in the sentence ‘‘The battery has a long life’’ with a posi-
ive sentiment, there is a part-whole relationship between the
ords ‘‘battery’’ and ‘‘life’’, a modification relationship between

∗ Corresponding author.
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the words ‘‘long’’ and ‘‘life’’ and etc. These intra-relationships, of-
ten ignored by previous routing methods, help understanding the
positive sentiment. It is imperative to leverage implicit knowl-
edge in the words’ semantic context to learn hierarchical and
intra-relationships spontaneously across layers (Akhtar, Ekbal, &
Cambria, 2020; Cambria, Li, Xing, Poria, & Kwok, 2020; Chikersal,
Poria, Cambria, Gelbukh, & Siong, 2015).

In this paper, we study the novel problem of simultane-
ously exploring these two relationships (intra-relationship and
hierarchical relationship) interactively in the routing context. In
essence, we need to solve several challenges: (i) how to evaluate
the relationship between capsules in the same layer; (ii) how to
further improve the quality of the learned features in text classi-
fication; and (iii) how to evaluate the quality of the relationships
that is learned from the capsules. Graph convolutional networks
(GCN) (Kipf & Welling, 2017) have demonstrated good effects in
the graph feature learning (Pan et al., 2019; Wu et al., 2020).
And we believe this method also takes effect in the capsules
feature gathering. In an attempt to solve these challenges, we
treat the capsule as a node in a graph and propose a new
graph routing mechanism that learns the intra-relationships with
GCN. In general, our proposed graph routing learns the intra-
relationship by aggregating information from other capsules in
the same layers, and learns the hierarchical relationship with
routing by agreement across different layers. Thus, the differences

between proposed graph routing and existing routing are:

https://doi.org/10.1016/j.neunet.2021.06.018
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• Our graph routing method pays attention to the intra-
relationship learning with graph neural network, while ex-
isting routing methods do not;
• Our graph routing method applies the attention mechanism

in the feature strength, and existing routing methods do not;

In this paper, the relationship between different capsules is eval-
uated by the Wasserstein distance (WD) effectively, and a new
normalization trick is proposed to approximate the adjacency
matrix well. Also, implicit information in text data is identified
easily with information aggregation and routing agreement. Com-
pared with state-of-the-art models, the performance in three of
the five datasets improved by more than 0.3 points in accuracy.
Therefore, the challenges mentioned before are solved well with
the proposed graph routing, and the main contributions of this
paper are:

• We investigate, for the first time, intra-relationships be-
tween capsules by leveraging words’ semantic context
where we treat capsules in each layer as nodes in a graph.
• We introduce a new routing algorithm combining bottom-

up routing and top-down attention and learn hierarchical
and intra-relationships spontaneously.
• Extensive experiments show that our proposed routing al-

gorithm performs better than existing routing methods.

2. Preliminary

When capsule networks were proposed (Hinton et al., 2011),
they were mainly applied in image processing. Multiple capsules
were required to be consistent in one detection. However, the
intra-relationship between capsules cannot be ignored when pro-
cessing text data. To our best knowledge, there are no works
about intra-relationship learning in the routing. Before introduc-
ing our graph routing, we will make a preliminary introduction
about the classic routing. The symbols that this paper uses are
listed in Table 1.

Since dynamic routing was proposed by Sabour et al. (2017), it
has been treated as the standard routing method. Let the capsule
vector in the first layer be ui. Before routing, a transformation
procedure is applied to encode spatial relationships between local
features and global features:

ûj|i = WDui

where WD is an affine transformation matrix. Generally, routing
decides how to send the capsule vector ui to the second layer.
This is controlled by a weight variable cij, which is multiplied with
he corresponding value ûj|i:

j =

n∑
i=1

cijûj|i

The squash function is then applied to ensure that the norm of sj
s bounded by 1, while the direction of sj should not be changed.
The squash function has the form

vj =
∥sj∥2

1+ ∥sj∥2
sj
∥sj∥

Generally, cij is a non-negative scalar, and the sum of all weights
cij in the first layer is 1. It is obtained from the softmax function:

cij =
exp(eij)∑
k exp(eik)

Different from attention models, routing is a bottom up method
in feature gathering, and this is illustrated in following equation
346
which is the across layer operation with i being the capsules from
the first layer and j being the capsules from the second layer:

eij = eij + ûj|ivj

eij is the coupling coefficient, and the general routing method
is using the clustering method to find the probability in mapping
different capsules to related capsules across layers. However, as
opposed to related works, we investigate relationships between
capsules in the same layer.

3. Model architecture

To make a fair comparison with other routing mechanisms, we
are using the same architecture proposed by Zhao et al. (2018).
The model architecture components are four layers which are
the N-gram convolutional layer (NCL), the primary capsule layer
(PCL), the routing layer (RL), and the representation layer. The
architecture is basically the same as Capsule-A in Zhao et al.
(2018), which is depicted in Fig. 1.

3.1. N-gram Convolutional Layer (NCL)

After getting the input from the word embedding, each doc-
ument is represented by x ∈ RL×D, where L denotes the docu-
ment length (padded where necessary), D is the word embedding
length. Then the input will be fed into the NCL to detect features
at different positions. The process is depicted in Eq. (1),

ga
i = f1(W a

· xi:i+K−s + b1) (1)

where K denotes the N-gram size, s is the stride width, W a
∈

RK×D is the filter during the feature detection with convolutional
operation, b1 ∈ R is a bias term, and f1 denotes the activation
function (i.e., ReLU) in that layer. After the filtering with a certain
filter W a over the xi:i+K−s, we get a feature value ga

i ∈ R. All
of those features form the feature map ga

= [g1, g2, . . . , gL−K+s]
with ga

∈ RL−K+s from the NCL. The number of the filter is set to
B1. Hence, the output of the NCL is g which is rearranged as

g = [g1, g2, . . . , gB1 ] ∈ R(L−K+s)×B1

3.2. Primary Capsule Layer (PCL)

Then g is fed into the PCL which is composed of the convo-
lutional operation. In this layer, each row in g convolves with a
filter W b

∈ RB1×d, where d denotes the capsule dimension. This
is depicted in Eq. (2).

pi = f2(W b
· gi + b2) (2)

where f2 is the squash function for the output vector, b2 is a
capsule bias term. As in the NCL, there are B2 filters in total.
Therefore, the generated features are rearranged as

p = [p1, p2, . . . , pB2 ] ∈ R(L−K+s)×B2×d

Extensive computational resources are required when there is
a large document as input. Hence, the capsule compression is
conducted to condense the capsule number to a smaller one. The
condensed capsule ui is computed as:

ui =
∑

j

wjpj ∈ Rd (3)

where wj is the parameter needed to be learned.
In the next step, the transformation matrix Wij is utilized to

generate the prediction vector ûj|i ∈ Rd (the parent capsule j) from
its child capsule u , where N is the number of parent capsules in
i
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Table 1
The list of symbols involved in this paper.
x The representation of a document IN The identity matrix

ui The first layer capsule vector in the
routing

sj The second layer capsule vector in
the routing

vj The output from the routing cij The weight variable

WD The affine transformation matrix eij The coupling coefficient

Wi The parameters of the neural
networks

A, Ã The adjacency matrix

D The degree matrix in the graph fatt (·) The feed-forward function

dw, de, dc The Wasserstein distance, euclidean
distance and cosine distance

ga
i The output from N-gram

convolutional layer

hj The output from GCN mj The output from fatt
W a,W b The filter in the convolutional layer pi The output from primary capsule

layer

K The size of N-gram s The stride size

b1, b2 The bias term B1, B2 The number of the filter

L The document length d The capsule dimension

E The capsule number after the routing f1(·) The activate function (i.e. ReLU)

C The class number f2(·) The squash function

αj The attention value
Fig. 1. The architecture of the model.
he last step which is (L−K + s). This vector can be computed as
follows:

ûj|i = Wijui + bj|i ∈ Rd (4)

where bj|i denotes the capsule bias term. This step helps learn
child–parent relationships for the capsule networks as argued
in Sabour et al. (2017). Therefore, the feature map generated from
the primary capsule layer is u ∈ RE×N×d, where E is the capsule
number after the matrix transformation.

Then the graph routing algorithm is utilized to get voting
results, which can be depicted as:

v = Graph-Routing(û) (5)

where û is the composition of all of the child capsules, and v ∈
RC×d denotes all of the parent-capsules, where C denotes the class
number. Details are referred to Section 4.

3.3. Representation layer

Representation layer is the last layer which gets the input v
from the graph routing. The final capsule number C is the same
as the class number of the document. The vector normalization is
utilized to get the class probability p̂ = ∥v∥ ∈ RC .

4. Graph routing

To make the routing simple and effective, each capsule is
treated as a node in a graph. Meanings of sentences are expressed
by the composition of different phrases, and each capsule only
captures a certain phrase during the feature selection. To obtain a
comprehensive understanding of a sentence, the relationship be-
tween different capsules must be learned. Actually, there should
be connections between nodes as it will be helpful for reaching an
347
agreement during the routing. Inspired by GCN (Kipf & Welling,
2017), which elaborates the relationships among the nodes in a
graph, we learn intra-correlation with the graph convolutional
operation. The structure of graph routing is shown in Fig. 2.

The GCN procedure is shown in the red box in Fig. 2, based on
an undirected complete graph that is composed of the capsules
in the lower layer. There are usually more than three iterations
in a routing. Therefore, in order to make the structure efficient
and simple, a single GCN layer is used in each iteration to gather
intra-relationship within the nodes. If the number of iterations
is set to 3, we will have a routing network with three layers of
GCN. The weight aij in the edge is the intra-relationship between
the two connected capsules i and j. Generally, if two connected
capsules are semantically close, there will be a large value for
the weight aij. And if there is no semantic connection between
these two capsules, there will be a small value for weight aij. The
way to get the intra-relationship between two capsules will be
discussed in the following subsection. In general, these three dis-
tance measurements are used first, coupled with normalization
trick in Section 4.2, when evaluating the relationship between
capsules. The attention mechanism in Section 4.3 involved is the
same as that in Bahdanau, Cho, and Bengio (2014).

4.1. Relationship between capsules

In the common GCN (Kipf & Welling, 2017), the relationship
between two nodes is expressed by the non-negative value in the
adjacency matrix A. However, it is the prior known information
for A which is predefined by the existing data. The convolutional
operation is conducted in the Fourier domain to get the hidden
feature, which is expressed in Eq. (6) (Hammond, Vandergheynst,
& Gribonval, 2011).

W ⋆ u ≈ W Ãu (6)
i i i i
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here Wi is the parameter of the network, and Ã is from Eq. (7)

Ã = IN + D−
1
2 AD−

1
2 (7)

where A ∈ RN×N is the adjacency matrix, N is the capsule number,
nd D is the degree matrix, with Dii =

∑
j Aij.

After filtering by the convolutional kernel, ui will aggregate
ore relevant information for the classification. From Eq. (6), we
an see that if one capsule is related to another capsule in layer
, the corresponding value in the adjacency matrix will be big.
he relationship matrix is one of the adjacency matrices, with
he correlation value as the connection strength. Generally, the
djacency matrix A is known information where its values are
inary or real to express the distance between two nodes.
In our case, it is difficult to evaluate the relationship be-

ween two capsules as this information is unknown before rout-
ng. Furthermore, the capsule vector is a hidden representation
hich lacks detailed semantic meaning. Therefore, to overcome
his challenge, we use different distance measurements to find
he relationship among capsules semantically and effectively. In
his paper, we explore three distance measurements, which are
asserstein distance (WD), Euclidean distance (ED), and cosine

imilarity (CS). We argue that if two vectors (for example, vector
i and vector yj) express a similar meaning, they will be se-

mantically close with a large relationship value in the adjacency
matrix.

4.1.1. Wasserstein Distance (WD)
Wasserstein Distance is usually used in generative models (Li,

Pan, Wang, Yang, & Cambria, 2018) due to its ability in measuring
 i

348
the distance between probability distributions. The capsule vector
can be treated as the probability of a certain attribute that is
captured. Therefore, WD which is calculated as dw

ij = inf E[∥yi −
j∥p]

1/p can be applied in capsule vector relationship evaluation,
here inf denotes infimum, i.e., the greatest lower bound. In this
aper, p is set to 1. To transfer the Wasserstein distance dw to the
ntra-relationship, aij = −dw

ij is applied. Generally, if two capsules
re semantically close, the value of the intra relationship will be
ig.

.1.2. Euclidean Distance (ED)
Euclidean Distance is the straight-line distance between two

ectors in Euclidean space, and it is calculated as deij =
(yi − yj) · (yi − yj). To transfer the Euclidean distance de to the

ntra relationship, aij = −deij is also applied. Similarly, if two
apsules are semantically close, the value of the intra relationship
ill be big.

.1.3. Cosine Similarity (CS)
Cosine Similarity is another popular measurement between

wo non-zero vectors, and it can be calculated as dcij =
yi·yj
∥yi∥∥yj∥

.
o ensure the distance to itself is zero which is same as the case
n ED and WD, the intra relationship between two capsules is
xpressed as aij = dcij − 1.

.2. Normalization trick

Generally, the renormalization trick is used in Eq. (7), which
s I + D−

1
2 AD−

1
2 → D̂−

1
2 MD̂−

1
2 , with M = A + I and D̂ =
N N ii
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j Mij. However, if we use ED and WD as the measurement for
ntra relationship, the values are negative, which makes it difficult
o apply the general normalization trick to get the approximate
djacency matrix A because it requires all of the values being non-
egative. To overcome this issue, a more general normalization
rick for Eq. (7) is proposed in this paper, which is given in Eq. (8),

˜ → softmax(A)+ IN (8)

ach capsule treats itself as the centroid of the clustering by
dding a one-hot vector. Ã has eigenvalues in the range [0, 1] as
he distance to itself is 0. And this avoids the gradients explod-
ng/vanishing during the neural network optimization. It is an
nstance-level normalization for the capsule’s relationship learn-
ng. Different from the renormalization trick mentioned before,
he semantic distance is normalized in the view of the current
apsule by using the softmax function in the same row. It can be
reated as a variant of random Laplacian matrix normalization.
his matches the true situation in which the importance of the
ord is different when the centroid word is different. Taking ‘‘The
attery has a long life’’ as an example, in the view of the word
‘The’’, the word ‘‘battery’’ will have a high value as ‘‘The’’ is the
efinite article for ‘‘battery’’. However, in the view of the word
‘battery’’, ‘‘long life’’ will play a more important role to express
he positive sentiment than the word ‘‘The’’. The ablation study
hows the effectiveness of the proposed method.

.3. With attention

To further improve the quality of the learned features from
ur graph routing, and guarantee the learned features are useful,
he attention mechanism is applied. Graph routing is a bottom-up
ethod which highly depends on lower layer features. If there is
o clear cluster center, it will be difficult to do the feature selec-
ion. Different from the routing mechanism, attention mechanism
s a top-down method which helps the routing to select useful
elationships by considering the context information in the same
ayer. This guarantees the quality of the gathered relationship.
he attention is applied to the aggregated output hj from GCN
hich is described in Eq. (9).

mj ← fatt (hj)

αj =
expmj∑
j expmj

(9)

Here, fatt is the feed-forward function to get the attention weight.
The attention score αj is then applied to the learned feature hj
that is got from GCN. The proposed algorithm is in Algorithm 1.
It is the same framework as dynamic routing, except for GCN
and attention mechanisms. As mentioned earlier, in a routing
iteration, it is a single-layer GCN for the feature aggregation.

In the lines 3–4, the Ã is obtained from the adjacency matrix
A row by row. Lines 5–17 are the routing details about the graph
routing. In lines 5–8, GCN and attention are applied. In the line
11, the weight scalar cij is calculated from eij in layer l. In the line
14, the squash function is applied to get the output value vj. In
the line 16, eij in layer l+ 1 is calculated.

5. Experiments

In this section, we conduct experiments to evaluate the effec-
tiveness of the proposed graph routing. Specifically, we conduct
experiments of document classification to validate the effective-
ness of the proposed routing in text classification. Then, we
349
Algorithm 1 The Algorithm of the Graph Routing

Require: Capsules ui
1: for l layers do
2: Initialize eij ←− 0
3: Get the adjacency matrix A about capsules in layer l.
4: Get Ã with Eq. (8).
5: hj ← ul

ijÃiWij
6: mj ← fatt (hj)
7: αj = softmax(mj)
8: oj ← αjhj
9: for r routing number do
0: All capsule i in layer l:
1: cij ←− softmax(elij)
2: All capsule j in layer (l+ 1):
3: sj ←−

∑
i cijoj

4: vj ←− squash(sj)
5: All capsule i in layer l and capsule j in layer (l+1):
6: el+1ij ←− elij + ul

ij · vj
7: end for
8: return vj
9: end for

Table 2
The details of the datasets.
Datasets Train Test Classes Avg-Docs Max-Docs Vocab Size

Amazon Clothing 250k 25k 5 68.0 4355 81836
Amazon Beauty 180k 15k 5 99.2 4494 80935
Emotion 15k 5k 13 65.7 167 30716
Yelp 650k 50k 5 118.4 1463 293402
AG news 120k 7.6k 4 39.3 196 19637

validate the hierarchical relationship learning with semantic con-
sistency, and validate intra relationship learning with adjacency
matrix illustration. Next, the ablation study is conducted to val-
idate the effectiveness of the proposed normalization trick. To
show the generalization of the proposed routing, we also com-
pare to BERT (Devlin, Chang, Lee, & Toutanova, 2018). Next, the
case study is illustrated to see the effectiveness of the proposed
routing. Finally, we conduct a parameter analysis.

5.1. Experimental settings

5.1.1. Datasets
We adopt five benchmark datasets for document classifica-

tion to evaluate the effectiveness of the proposed framework.
Amazon-Clothing and Amazon-Beauty are two review datasets
that we select,1 where each document is labeled with a rat-
ing ranging from [1, 5]. Emotion dataset2 contains 13 emotion
categories, namely: {Love, Empty, Relief, Anger, Surprise, Neu-
tral, Happiness, Sadness, Fun, Enthusiasm, worry, boredom, hate}.
Yelp3 is another review dataset we use. The label range in Yelp
dataset is also [1, 5]. AG News (Conneau, Schwenk, Barrault, &
Lecun, 2017) is a news dataset where each document belongs one
of the four classes, i.e., world, sports, business, and technology .
The statistics of those datasets are listed in Table 2.

Avg-Docs denotes the average word number in the document,
while Max-Docs is the maximum word number. Vocab size is the
number of the word that the corpus contains.

1 http://jmcauley.ucsd.edu/data/amazon/
2 https://data.world/crowdflower/sentiment-analysis-in-text
3 http://yelp.com/dataset

http://jmcauley.ucsd.edu/data/amazon/
https://data.world/crowdflower/sentiment-analysis-in-text
http://yelp.com/dataset
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Table 3
The classification results with different routing methods over those five datasets. § means results citing from Zhao
et al. (2018). Leaky DR is the abbreviation of leaky dynamic routing that is proposed in Zhao et al. (2018).
Routing Methods Amazon Clothing Amazon Beauty Microsoft Emotion Yelp AG News

Transformer 61.87% 62.50% 31.07% 64.61% 89.16%

EM Routing 60.57% 60.65% 31.04% 62.51% –
Dynamic Routing 62.87% 63.19% 30.82% 63.65% 89.02%
Leaky DR (A) 62.92% 63.47% 31.11% 64.08% 92.10%§
Leaky DR (B) – – – – 92.60%§
KDE Routing 62.94% 63.95% 31.83% 64.45% 90.08%

GCN 62.86% 63.47% 30.87% 63.35% 89.61%

Graph Routing(CS) 62.80% 63.81% 31.40% 64.69% 92.30%
Graph Routing(ED) 63.19% 64.03% 31.55% 64.61% 91.91%
Graph Routing(WD) 63.44% 64.13% 31.61% 65.33% 92.62%
With Attention 63.76% 64.34% 31.90% 65.62% 92.60%
w
i
o
f
t
s

5.1.2. Implementation details
We use TensorFlow in python to implement our model. In all

f the experiments, all word embeddings are initialized randomly
ith 300-dimensional vectors. The capsule number is set to 50,
he out channel number from NCL and PCL is 64, the stride for
he convolutional operation is 2. The batch size is set to 32,
nd the learning rate is 5e-5 during the model training with the
dam optimization algorithm (Kingma & Ba, 2014). All of the
xperimental results are averaged over 5 runs.

.2. Baseline methods

In the experiments, the compared routing methods include:

• EM Routing: EM routing is proposed in Sabour et al. (2018).
It is good at spatial feature extraction, and usually used in
image classification.
• Dynamic Routing: Dynamic routing is another popular

routing method which is proposed in Sabour et al. (2017),
and also usually used in image classification.
• Leaky Dynamic Routing: Leaky dynamic routing is pro-

posed in Zhao et al. (2018) and achieves state of the art
results in sentiment classification.
• KDE Routing: KDE routing is another robust routing model

proposed in Zhao, Peng, Eger, Cambria, and Yang (2019). This
model is good at the multi-label classification and has a good
generalization.
• GCN: To make the ablation study about the GCN, we only

utilize GCN in the routing part. Here, the adjacency matrix
is calculated with WD.
• Transformer: The transformer-based method is very

strong baseline model. It is added on top of the model to
replace the routing part while keeping other parts identical.

To make a fair comparison, all of the compared methods share
he same parameters with the same architecture described in
ection 3.

.3. Document classification

The results with different routing methods are listed in
able 3. The bold number in the table is the best result in a
ataset.
The word in the bracket behind the graph routing represents

he intra relationship measurement used in the adjacency matrix.
n the table, we can see that our proposed graph routing achieves
ompetitive performance. In particular, graph routing with differ-
nt intra relationships substantially outperforms the transformer,
nd there is a noticeable margin on all the experimental datasets.
lso, graph routing with different intra relationships obtains com-
etitive results against existing routing methods, such as dynamic
 N

350
Table 4
The semantic consistency between different layer output.
Routing Methods NCL PCL RL

Dynamic Routing 25.72% 25.39% 85.82%
Leaky Dynamic Routing 21.82% 25.05% 85.39%
KDE Routing 24.65% 25.56% 86.30%
Graph Routing 24.85% 25.70% 87.55%

routing, leaky dynamic routing and EM routing, especially in the
graph routing with WD which achieves the best results on all
of the datasets compared with other intra relationship measure-
ments. Therefore, we can conclude that the graph routing with
WD has obtained a good quality of the relationship between
different capsules. There is a slight improvement for the leaky
dynamic routing by using Leaky-Softmax (Sabour et al., 2017)
to replace the standard softmax function in strengthening the
relationship between a child and parent capsules. If we only apply
GCN to map the capsule vector to the final output by aggregating
the learned features directly, the improvement compared with
existing routing methods is limited. By combining with the at-
tention mechanism, our graph routing with WD has a further
improvement with the best precision on most of the datasets
compared with other routing methods. That is to say, with the
help of the attention mechanism, graph routing becomes more
robust and effective.

5.4. Semantic consistency

One important feature of our graph routing method is that it
can learn the hierarchical and intra relationship between capsules
at the same time. In this subsection, the effectiveness in the
hierarchical relationship learning is validated. However, it is dif-
ficult to evaluate this relationship directly as there is no specific
meaning in the capsule, even after the graph routing. However,
if this relationship between different capsules is well learned
in a layer, the capsule distribution in that layer will correlate
with the final output as well. That is to say, there will be a high
semantic consistency between the current capsule layer and the
final output if the hierarchical relationship is well learned. Thus,
semantic consistency between different layers is calculated. The
final output denotes v ∈ RC×d, where C is the class number, the
output in each layer is transferred to p ∈ Rm×d. Each vector in p
ill be labeled with the class number by finding the closest vector

n v. Then semantic consistency is calculated as the percentage
f times that the vector is in the right class. And the vectors
rom the NCL, PCL, and RL are considered. Then the outputs from
hose three layers will compute with the final output to get the
emantic consistency. This experiment is conducted on the AG

ews dataset, and the results are listed in Table 4.
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Fig. 3. The relationship among capsules that is learned with different measurements. (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of this article.)
T
C

From Table 4, we can see that there is no difference in column
CL and PCL compared with existing routing methods. There are
our categories about the document in the AG News. Therefore,
nly about 25% of the vectors from layer NCL and PCL remain
elevant to the final output. However, after the routing, the num-
er that is related to the final output increases sharply, especially
n the case of graph routing. That is to say that the hierarchical
elationship between different capsules is learned well after the
raph routing.

.4.1. Different relationship measurements
There are different intra relationship measurements to get the

djacency matrix between the capsules. From Table 3, we can see
hat the graph routing with WD achieves the best results on all
atasets compared with CS and ED. That is to say that WD is an
fficient method in distance evaluation. To explain the goodness
f the WD, the adjacency matrices with different measurements
ver the same document are illustrated in Fig. 3.
From the color blocks in the red box which is selected ran-

omly from the same location in the three cases, we can see that
he ED is noisier than the other two measurements, and there is a
lear value in WD. On the contrary, the value in CS is blurred. That
s to say that WD has a good evaluation for the intra relationship.

.5. Ablation study

To analyze the effectiveness of the new normalization trick
e proposed in Section 4.2, the ablation validation compared
ith the renormalization in Eq. (7) is conducted. As there is no
egative value for the adjacency matrix, the exponential function
s applied to the ED and WD. Therefore, aij = exp(−deij) in the
ase of ED, and aij = exp(−dw

ij ) in the case of WD. CS is kept the
ame due to its range being [0, 1]. Except for the normalization
rick over Ã is different, all the other parts of the model are kept
he same. The results are showed in Fig. 4.

From the figure, we can see that our normalization trick can
chieve better results compared with the normal one, especially
n the case of WD and ED. When using CS as the relationship
easurement, there is no difference between those two normal-

zation tricks as our normalization trick can be treated as a variant
f random Laplacian matrix normalization.
To validate the importance of the intra-relations that is learned

y the graph routing, we replace Ã that is learned from Eq. (7)
ith the identity matrix, and mask the intra-relations that is

earned among the capsules in the same layer. The result is
ictured in the red line named ‘Without A’ in Fig. 4. From the red
ine we can see that, all these three different distance metrics
re not working under such condition. That is to say, without
ntra-relations, the performance of our graph routing degrades
ramatically. This validates the importance of the intra-relations
hat is learned by our graph routing.
351
Fig. 4. The classification results with different normalization trick in GCN. y-axis
denotes the classification result, and the red line named ‘Without A’ is the result
of Ã being replaced by the identity matrix.

able 5
omparisons with different pooling out methods in BERT.

Max Avg Sum Our Routing

5 layers 36.13% 37.26% 33.08% 37.41%
12 layers 36.43% 37.00% 31.77% 37.03%

5.5.1. With BERT
BERT (Devlin et al., 2018) is so popular that we cannot ignore

it. To make fair comparisons, we set ‘‘output all encoded layers’’
to True in the pre-trained BERT4 model, which has been trained
on massive data and computing resources. Before sending these
results (12 layers in total, we also select last 5 layers as another
example) to the classifier, there are four ways to produce the
output, which are max pooling out (Max), average pooling out
(Avg), summation (Sum) and our routing method. The results on
the Microsoft emotion dataset are reported in Table 5.

We can see that with the help of BERT, our graph routing
achieves the best results compared with other pooling methods
both in the case of 5 layers and 12 layers. From this result, we can
conclude that our graph routing has a good generalization when
applied in a new model.

5.6. Case study

In this subsection, we show in Fig. 5 the effectiveness of our
model in category information extraction. Each word embedding
is labeled by the vector from the graph routing.

4 https://github.com/google-research/bert

https://github.com/google-research/bert
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Fig. 5. The figure above is the distribution of the word. Words in red are the science category, in blue are the world, in yellow are the sport and in green are the
business. The figures below are the category vector distribution after the squash operation. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
Fig. 6. The parameters analysis about the capsule number. y-axis denotes the classification result.
We can see that most of the words are labeled as the science
ategory after the optimization, and those words are closely re-
ated with the sentence topic. Also, from the output vector that
s shown in the text below, we can see that the values in science
re bigger compared with other categories. This example shows
he effectiveness of our routing in the semantic relationships
xtraction.

.7. Parameter analysis

In this subsection, two parameters of the routing, iteration
umber and the capsule dimension, are discussed. Results are in
ig. 6. In Fig. 6(a), when the capsule dimension is set to 64, it
chieves the best result. When the capsule dimension is 256, the
erver shows the OOM error due to the huge amount of memory
ccupation. There is no improvement compared with the dimen-
ion of 64 when the dimension is 128. Therefore, it is the best
hoice to set the dimension to 64. In Fig. 6(b), when the iteration
umber is set to 3, it achieves the best result. As the iteration
umber increases, there is no improvement in performance.
We know that graph routing has more steps than existing

outing methods, for example, it takes time to compute the ad-
acency matrix with WD. To validate its computing efficiency, a
omparison of the number of parameters and the time cost is
hown in Table 6. From the table, we can see that our graph
outing has a smaller parameter number than dynamic routing
nd leaky dynamic routing. Although the time cost is slightly
arger than dynamic routing and leaky dynamic routing, it is still
ompetitive considering the number of parameters.
352
Table 6
The parameter number and time cost of different routing methods. s denotes
second.
Routing methods #Parameter Time

EM Routing 31.69 MB 0.1587 s
KDE Routing 31.68 MB 0.1439 s
Leaky DR (A) 69.07 MB 0.2634 s
Dynamic Routing 69.07 MB 0.2632 s
Graph Routing with Attention 40.09 MB 0.2655 s

6. Related works

In this work, we applied the GCN in the routing between the
capsules. Therefore, the related works about the routing between
capsules will be introduced. Also, our work relates with document
classification with capsule network which will be introduced at
the same time.

6.1. Routing between capsules

Since the concept of ‘‘capsule’’ neural networks (Hinton et al.,
2011) was firstly proposed, it has become a hot research topic
due to its ability in improving the representational limitation of
CNNs in which pooling operation causes the information losing.
The transformation matrices between different capsules make the
capsule network capture the part-whole relationships. Together
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ith the routing-by-agreement (Sabour et al., 2017, 2018), cap-
ules neural network has achieved promising results on MNIST
ata.
It is a bottom-up way for the dynamic routing and the EM

outing proposed in Sabour et al. (2017, 2018) when cluster-
ng the vector or matrix together. There are different variants
f dynamic routing. Leaky softmax is applied by replacing the
oftmax function to strengthen the relationship between a child
nd parent capsules (Zhao et al., 2018). Task routing algorithm
as proposed by applying the clustering procedure in the task

evel (Xiao, Zhang, Chen, Wang, & Jin, 2018). Different from the
eneral dynamic routing, task routing introduced a new coupling
oefficient ckij by subdividing it to the task k. Xi, Bing, and Jin
2017) gave empirical results over the best parameters selection
n the capsule network with dynamic routing. Especially the
outing iterations during the routing procedure affects the perfor-
ance. Chen and Crandall (2018) believed that dynamic routing

s not well integrated into the training procedure, especially for
he iteration number which needs to be decided manually. Thus,
here is a bottleneck for the dynamic routing due to its expense of
omputation during the routing. Therefore, Zhang, Zhou, and Wu
2018) proposed weighted Kernel Density Estimation (KDE) to ac-
elerate the routing. In Zhao et al. (2019), an adaptive KDE routing
lgorithm was proposed to make the routing decide the iteration
umber automatically, which gives a further optimization for
he routing. The empirical results demonstrate its effectiveness
n different classification tasks. Apart from KDE, K-means clus-
ering method was also validated for its effectiveness during
outing (Ren & Lu, 2018). It is a bottom-up way for the attention,
hile routing is a top-down way. There are also researches about
ombining attention with the routing together in the capsule
etwork (Choi, Seo, Im, & Kang, 2019).

.2. Capsule network for text classification

Since capsule networks were proposed, most works are on
mage classification (Chen & Crandall, 2018; Sabour et al., 2017,
018; Xi et al., 2017), while recurrent neural networks (RNNs)
re more popular in text data processing (Chaturvedi, Ong, Tsang,
elsch, & Cambria, 2016; Chen, Ye, Cambria, Chen, & Xing, 2017;

i, 2018; Li et al., 2017). In Gong, Qiu, Wang, and Huang (2018),
ang, Sun, Han, Liu, and Zhu (2018), RNN-Capsule was proposed

or sentiment analysis. In Ren and Lu (2018), together with the
roposed compositional coding mechanism, bidirectional Gated
ecurrent Units (GRU) were adopted for text classification. Based
n the RNN, the attention model was applied in the capsule
etwork for aspect-level sentiment analysis (Wang, Sun, Huang,
Zhu, 2019).
Sabour et al. (2017) applied the convolutional layer, primary

apsule layer in their model similarly as in image classification.
CapsNet stacked the convolutional network, primary capsule

ayer, and representation layer together to do multi-task text
lassification (Xiao et al., 2018). Different from the MCapsNet,
hao et al. (2018) paralleled three such architecture together with
ilter window of 3, 4, 5 in the convolutional layer. All of those
orks show the effectiveness of such architectures in text feature
xtraction.

. Conclusion & future works

It is the first time to treat the capsule as a node in a graph,
nd our graph routing applies GCN to explore the relationship
etween capsules in the same layer. Together with the attention
echanism, graph routing also remedies the disadvantage of

he routing which highly depends on the lower level features.

urthermore, different distances between capsules are discussed.

353
Empirical results show the effectiveness of the proposed model:
The performance of three out of five datasets is improved by more
than 0.3 compared with state-of-the-art models. In the future
works, we will explore a more effective graph neural network
in the intra-relationship learning within the capsules, and find
out a more efficient method for feature learning of text data
using capsule networks. Also we will explore and design a new
attention mechanism to accommodate our graph routing.
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