
Knowledge-Based Systems 250 (2022) 108965

i
b
m
e
p
i
n
a
l
D
A
p
t
s
a
d
i
t
T
p
m

(

h
0

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Deep-attack over the deep reinforcement learning
Yang Li a,∗, Quan Pan a, Erik Cambria b

a Northwestern Polytechnical University, China
b Nanyang Technological University, Singapore

a r t i c l e i n f o

Article history:
Received 22 July 2021
Received in revised form 29 April 2022
Accepted 30 April 2022
Available online 10 May 2022

Keywords:
Adversarial attack
Deep reinforcement learning
Adversarial training

a b s t r a c t

Recent adversarial attack developments have made reinforcement learning more vulnerable, and
different approaches exist to deploy attacks against it, where the key is how to choose the right timing
of the attack. Some work tries to design an attack evaluation function to select critical points that will
be attacked if the value is greater than a certain threshold. This approach makes it difficult to find
the right place to deploy an attack without considering the long-term impact. In addition, there is
a lack of appropriate indicators of assessment during attacks. To make the attacks more intelligent
as well as to remedy the existing problems, we propose the reinforcement learning-based attacking
framework by considering the effectiveness and stealthy spontaneously, while we also propose a new
metric to evaluate the performance of the attack model in these two aspects. Experimental results
show the effectiveness of our proposed model and the goodness of our proposed evaluation metric.
Furthermore, we validate the transferability of the model, and also its robustness under the adversarial
training.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

With help of deep learning [1], deep reinforcement learn-
ng (DRL) has developed rapidly in the past few years and has
ecome an important algorithm in many applications, e.g., auto-
atic navigation [2], text generation [3], sentiment analysis [4],
tc. In a deep reinforcement learning, it is to train an advanced
olicy network and guide the agent to take the optimal action
n accordance with the state of the environment [5]. A policy
etwork is usually a deep learning model to approximate the
ction-value function. However, the vulnerability of the deep
earning model which is discovered by Szegedy et al. [6] has made
RL unstable when tackling different types of adversarial attacks.
ttacks are usually deployed by adding some carefully crafted
erturbations to the input and guiding the deep learning model
o give incorrect outputs with high confidence. Unlike a typical
upervised/unsupervised learning task which can be interpreted
s a two-element tuple, i.e., ⟨X , Y ⟩ (where X indicates the
ata and Y indicates the label), there are at least four elements
.e., ⟨S, A, π, R⟩ in a typical DRL (where A is the action set, S is
he state set, R is the reward set, and π is the policy network.).
herefore, DRL would be theoretically more vulnerable than su-
ervised/unsupervised learning. And in fact, there have been
any studies on attacking DRL by deploying perturbations on

∗ Corresponding author.
E-mail addresses: liyangnpu@nwpu.edu.cn (Y. Li), quanpan@nwpu.edu.cn

Q. Pan), liyangnpu@nwpu.edu.cn (E. Cambria).
ttps://doi.org/10.1016/j.knosys.2022.108965
950-7051/© 2022 Elsevier B.V. All rights reserved.
different variables. In general, depending on the attack variables,
they can be classified as reward-based attacks, observation-based
attacks, action-based attacks, and policy-based attacks [7], and
all of these attack strategies are designed to mislead the agent
into taking the wrong action. Because it is not a one-time attack,
an attack in DRL is more difficult than an attack in the general
domain due to the series of steps involved in executing an action
with a well-trained policy network. In addition, there is no clear
definition of what constitutes a successful attack. Instead, there
are two main constraints for a successful attack on an image,
namely effectiveness and stealth. Therefore, it is necessary to
propose evaluation metrics for the effectiveness of attacks on
DRLs.

Attacking effectiveness means an attack confusing the model
successfully with few training samples, however in DRL we need
to consider both long-term success and short-term success as
it is a series of actions. Specifically, short-term success means
an attack affects the agent instantly and misleads it taking the
wrong action immediately. This type of attack focuses on im-
mediate effectiveness. While long-term success means an attack
destroys the task with the fewest actions. This type of attack
has been widely applied in many attacking algorithms [8,9]. The
stealthiness of an attack is another important feature, which
is important in practical applications because if an attack can
be easily detected, it will simply be ended with brute force. A
perfect attack is like the advanced persistent threat (APT) attack
in network security, it will infiltrate the target for a long time
until the final attack is carried out to destroy the mission.

https://doi.org/10.1016/j.knosys.2022.108965
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2022.108965&domain=pdf
mailto:liyangnpu@nwpu.edu.cn
mailto:quanpan@nwpu.edu.cn
mailto:liyangnpu@nwpu.edu.cn
https://doi.org/10.1016/j.knosys.2022.108965

Y. Li, Q. Pan and E. Cambria Knowledge-Based Systems 250 (2022) 108965
However, there are seldom works combining the two attacks
together. Generally, if we can find the key points for attacking
which may have a long-term effect, the attack will be more
effective. But the truth is that it is difficult to find them as they
are not connected with future action directly. However, as we
mentioned above, the short-term attack is an instant action, while
the long-term attack is global action. If we can find the connection
between these two types of attacks, their effectiveness will im-
prove a lot. In this paper, to cope with such a problem, a general
attacking framework (i.e., attacker) with Deep Q-Network (DQN)
is proposed, the goal of the attacker policy network is to learn
the timing of the attack. Generally, it is to find a policy π∗ that
maximizes the total rewards from all perturbed states, which is
illustrated as follows:

π∗
= argmax

r
{E[

MX∑
t=0

γ rX (π (ATK (st); θX))]} (1)

where MX is the total step and rX (·) denotes the attacking re-
wards function, π (·) usually is a neural network which can be
parameterized with θX , ATK (·) is the attacking method, and γ is
the discount factor. To ensure the stealthy and effectiveness of
attacks, we designed the short-term reward rstr and long-term re-
ward rltr to guide the agent, at the meantime, these two rewards
can also be appropriate evaluation indicators. The contribution of
this paper can be summarized as follows:

• Proposed a novel attacking framework which not only con-
siders the long-term attack but also focuses on the short-
term attack based on deep reinforcement learning;

• Proposed a new evaluation metric for the attacking effec-
tiveness and stealth;

• Validated the effectiveness of the proposed model with em-
pirical experiments.

This paper is organized as follows: Section 2 describes the
related works about the adversarial attack in reinforcement learn-
ing. Section 3 provides the background of DQN and the traditional
attacking method about critical point selection. Section 4 specifies
how we design our attack method and Section 5 summarizes the
evaluation results. Finally, we conclude our work and give future
works in Section 6.

2. Related works

There are increasing researches on the adversarial attack and
defense that exists in reinforcement learning, we will give a brief
summarizing of existing works in terms of adversarial attack and
adversarial defense separately.

2.1. Adversarial attack

There are plenty of works about the adversarial attack in
DRL [10], and based on the attacking variables, they can be
classified into the observation-based attack, reward-based attack,
action-based attack, policy-based attack, and environment-based
attack [7]. Observation-based attack means the attack occurs
on the state observed by the agent, and the attack usually is
deployed with the image-based attacking method. However, it is
difficult to distinguish the difference between the observation-
and environment-based attack as the state and environment can
be the subset of the observation in general. For example, Huang
et al. [11] who was the first one to explore the vulnerability in
reinforcement learning deployed the attacks (i.e., Fast Gradient
Sign Method (FGSM)) over the state directly. Behzadan et al. [12]
deployed the attack over the state to induce the agent with a
transfer learning-based method on the DQN. To find the right
2

time of attacking, Lin et al. [13] proposed the Strategically-Timed
Attack which only selects the key framework to conduct the
attack by designing a judgment function based on the state–
action pair. The attacking method they deployed is Carlini and
Wagner attack (C&W) [14]. Similarly, Kos et al. [15] adopted value
function to guide the attack by judging whether the value is
higher than a certain threshold, and Russo et al. [16] applied the
Markov decision process to select the attacking frame to poison.
All those attacks mentioned above need to know the parameters
of the model, i.e., white-box attack. While there also are works on
the black-box attack that can access only the input and output of
the RL. For example, Huang et al. [11] utilized a surrogate policy
network with a rollout technique to construct the adversarial
state, and experimental results showed the usefulness of attack.
Zhao et al. [17] proposed an approximation model to deploy the
black-box attack by predicting the target agent’s future actions
based on their time-series information. And similar works can be
found in works [12,18].

Apart from manipulating the environment or state that agents
are in, some works try the decrease the performance by craft-
ing the rewards, which is called reward-based attack listed in
work [7]. For example, Tretschk et al. [8] adopted the adversarial
transformer network to craft the adversarial rewards over the
victim agent with a sequence of attacks, and the agent is misled
in the opposite reward direction over time. While Han et al. [19]
applied a more direct way to conduct the reward-based attack
by flipping a certain number of rewards signs. Kiourti et al. [20]
utilized the Trojan technique to attack the target policy network
by deploying the in-band reward modification. Perturb over the
action space is another approach to attack the agent, for example,
Lee et al. [21] conducted the action space attack by reformulating
the optimization problems that distribute the attacks across the
action and temporal dimensions. In this paper, the goal is to
learn an intelligent attacker which can deploy the attack at the
right place by considering the effectiveness and stealthy sponta-
neously. Therefore, the environment is where we would like to
deploy the attack.

2.2. Adversarial defense

All defense methods applied in reinforcement learning can be
categorized into those three types, i.e., adversarial training, robust
learning, and adversarial detection. Adversarial training is to add
the adversarial samples into the training data, the main goal is
to improve the generalization of the model. Since Goodfellow
et al. [22] proposed FGSM to conduct the adversarial training
over the image classification, this method has been successfully
applied in reinforcement learning. For example, Kos et al. [15]
and Pattanaik et al. [23] applied the FGSM to obtain adversarial
examples constantly which helps the classification model acquire
the resistance to adversarial examples. While the limitation of
this method is that it cannot defend the outlier that does not
exist in the training set. Apart from adding the adversarial sam-
ples constantly, some researchers do it differently, for example,
Behzadan et al. [24] validated that if the adversarial samples
generated by FGSM are added to the training set with a certain
probability (i.e., P), better defense effects can also be achieved.
And empirical results of DQN show that when setting P to 0.2 or
0.4, DQN can obtain a normal performance after the adversarial
training. Based on this work, Behzadan et al. [25] adopted the
ε-greedy search to find a more stable and efficient way to add ad-
versarial samples in their most recent work. Another adversarial
training approach is through the min–max game, For example, Gu
et al. [26] formulated the task as a zero-sum dual-agent Markov
game by splitting the agent into adversarial and protagonist, and
the robustness is achieved from the min–max game between

Y. Li, Q. Pan and E. Cambria Knowledge-Based Systems 250 (2022) 108965

t
t
p
e
g
a
s
i
I
h

3

3

a
w

w
f
a
m
a
m
d

m

Z
r
n
u
m

4

d
w
W
l
o
m
s
t
o
n
A
w
t
a
l
m
m
i
p

hem. Similarly, Pinto et al. [27] introduced two agents to play
he zero-sum discount game to ensure the robustness of the
olicy learning. Different from the adversarial playing, Behzadan
t al. [28] adopt an equivalent model as the noisy network to
enerate the adversarial samples via FGSM. Neklyudov et al. [29]
pplied the Gaussian variance layer to generate the adversarial
amples, and empirical results show that this method is effective
n improving the ability of exploration and robustness of agents.
n this paper, we mainly focus on adversarial training and explore
ow adversarial training can enhance the robustness of DRL.

. Preliminary

.1. Deep Q-learning network

Deep Q-learning is a classical reinforcement learning method,
nd it can be formulated as a Markov Decision Process (MDP),
hich is defined with a tuple ⟨S, A, π (θ), R, γ , µ0⟩ where S is the

state space, A is the action space, π (θ) is the policy network, R
is the reward function, and γ denotes discount factor indicating
how much the immediate reward will affect the future reward
and µ0 is the initial state. The agent tries to learn a policy network
to interact with the environment efficiently. And the DQN aims
to find an optimal policy network by solving the Bellman optimal
equation:

Q (s, a) = E[r + γ max
a′

Q ∗(s′, a′)] (2)

Where r denotes the reward of the agent, s′ denotes the current
state, and a′ is the action space. The general way is to train the
network by minimizing the temporal different loss (e.g., squared
Bellman error). And the best action is selected with the maximum
Q value.

3.2. Strategically timed selection

As it is the sequential task for the agent to interact with the
environment, to reduce the attacking frequency, and increase the
attacking effectiveness, lots of studies focus on how to select the
critical point (frame) to deploy the attack. A more general way
is to select by inner driving where the attack is only deployed
when the agent strongly prefers a specific action. And it is usually
decided by the predefined attack score. In the policy gradient-
based method, the attack score is usually defined as in Eq. (3).

c(st) = max
at

π (st , at) − min
at

π (st , at) (3)

where π is the policy network which maps state–action pairs to
a probability in action space, same intuition is always deployed
in value-based methods (e.g., DQN), where the attack score is
defined in Eq. (4).

c(st) = max
at

Φ(Q (st , at)) − min
at

Φ(Q (st , at)) (4)

where Q is the value network, which Φ is the score function
(e.g., softmax function). The attack is conducted when the attack
score is larger than a threshold, which helps increase the attack
effectiveness. While in some papers, to make the attack stealthy,
they deployed the attack only when the variance of Q value
(in Eq. (5)) is low.

v(st) =
1

|A| − 1

|A|∑
i=1

(Q (st , ai) −
1
|A|

|A|∑
j=1

Q (st , aj)) (5)

Therefore, the attack rules are quite opposite when considering
the different requirements. However, this type of attack depends
on the threshold that is decided manually, and also they are
lacking the comprehensive evaluation metric about the attacking
effectiveness and stealthy.
3

3.3. Attacking methods

In this paper, the attack is deployed in a white-box environ-
ment where we know the parameters of the model, i.e., we need
to know the actions of the target agent, as well as information
about the state of each frame after the agent performs the ac-
tion. Generally, for white-box attacks, the adversarial examples
can be learned from as xadv = argmax

∥x′−x∥∞≤ε

l(h(x′), y), where x′

denotes the crafted adversarial sample, and l(·) represents the
loss function between the output and the correct label. There are
several efficient attacking approaches (ATK for short) to craft the
adversarial examples method, e.g., FGSM [22], Projected Gradient
Descent (PGD) [30], and C&W [31], etc. Our paper also applied
those three models to generate the adversarial samples under
our framework. FGSM generates the adversarial sample with one
step perturbation along the gradient direction, and the step size
is constrained to ε [22]. The process is described as:

xadv = x + ε · sign(∇xl(h(x), y)) (6)

PGD subdivides the process into several small steps. And af-
ter each step of perturbation, all the adversarial samples are
projected to the ε-ball again [30]. The process is described as:

xtadv = Πε(xt−1
+ β · sign(∇xl(h(xt−1), y))) (7)

here β is the step size, and Π (·) represents the projection
unction. Generally, PGD is the strongest first-order attack. One of
nother popular attack method is C&W. The key idea of this attack
ethod is to minimize the distance between normal samples
nd adversarial samples and to maximize the probability of the
isclassification at the same time [31]. And the attack process is
escribed as follows:

dn =
1
2
(tanh(wn) + 1) − xn

in
wn

∥dn∥ + c · f (
1
2
(tanh(wn) + 1))

(8)

where f (x′) = max(max{Z(x′)i : i ̸= t} − Z(x′)t , −k) with
(x′)t represents the probability of the adversarial sample x′, k
epresents the confidence, and dn is the distance between the
ormal sample and the adversarial sample. In this paper, to fully
nderstand our proposed attack framework, we apply all three
ethods to the attack.

. Method description

In this paper, we focus on the white box attack after DRL is
eployed, and try to deploy the attack with an intelligent agent
hich is named attacker by learning a stable policy network θX .
ith policy network θX , the attacker will know when to attack by

earning a certain attack pattern over observations. The structure
f the proposed model is shown in Fig. 1. It is the man-in-the-
iddle format for the attacker when it deploys the attack on state

t . Then the adversarial image will be sent to the agent directly,
he reward rX of the attacker is originated from the agent. Based
n this setting, the attacker’s action space can be {None, Attack},
oted that None represents attacker not taking any action, and
ttack represents attacker adding perturbation on observation. As
e have mentioned above, most methods deploy the attack with
he critical point to decide when conducting the attack [13,15],
nd this method is only based on rules and does not consider the
ong term reward, and is hard to obtain a good attacking perfor-
ance. As we can see from the action space, the agent will be
ore stealthy if it takes more None operations. On the contrary,

t is not. Generally, the goal of the model is to decrease DRL’s
erformance with the fewest Attack steps. However, it is difficult

Y. Li, Q. Pan and E. Cambria Knowledge-Based Systems 250 (2022) 108965

t
B
t
r
t
s
o

w
d

a

t
a

f
w

r

W
r

a
s
w
m

A
r
a

2
a
o
t
r
r
N
N
t
w
l
L
l
t
L
Q

5

p
i
f
m

Fig. 1. The structure of the proposed model.

o make the balance between attack effectiveness and stealthy.
ased on previous work [32], the goal of DRL is to maximize
he expected value of the cumulative sum of a received scalar
eward signal. Therefore, an effective way to guide the attacker is
o design a combination of rewards, including effectiveness and
tealth. To cope with this problem, we have designed two types
f rewards to help the attacker learn a better policy network θX ,

and we will introduce them one by one.

4.1. Short-term attacking reward

Intuitively, if an agent is attacked and the attack is success-
ful, its action will immediately deviate from its original action,
otherwise, we will consider the attack a failure. To encourage a
successful short-term attack, if the new action taken from the
disturbing observation is different from the original action, we
will give a positive reward to the agent. An important feature of
this reward is that it changes over time. Moreover, the ultimate
goal is to ensure that all attacks have a successful outcome.
Therefore, we can use the success rate of the attack to represent
the short-term return. In the long run, the success rate rs of the
attack can be defined as:

rs =

⌊
Na

Ns

⌋
(9)

here ⌊·⌋ is the floor function to obtain one decimal place, Na
enotes the number of the successful attack before time t , and

Ns is the total number of the attack before time t .
As mentioned above, it is best to implement stealth bonus in

a short-term reward. This can be indicated by the attacking ratio.
If the ratio of None is low, then the attacker has a low attack rate,
and this can be considered an attack with good stealth. And the
attack rate ra is defined as:

ra =

⌊
Ns

Nt

⌋
(10)

where Nt denotes the total play of the agent before time t . From
the work [33], we can conclude that an anomaly detector will
be difficult to detect the attack when the attack number is small
enough in deep reinforcement learning. Therefore, to ensure its
stealth, we need to ensure the attacking number is low enough.

To balance the attack effectiveness and stealth, the reward
function for attacker at time t is defined as:

rstr = rs − ra (11)

This reward is also named a short-term reward because it shows
the immediate effect of the agent performing the action. Different
from previous work, we define the attack as a learning process
where attackers need to learn the place (i.e., step) and the way
(i.e., Attack on the action and attack on the state) to attack. Fur-
thermore, suppose the attack success rate is 100% (i.e., Na = Ns),
nd the agent play a oracle game which has Ns = Ra, then short-

term reward will be Ra−Ns
Ra

. From this function, we can conclude
hat the short-term reward is to ensure a minimal number of
ttacks by the attacker.
 r

4

4.2. Long-term attacking reward

As we have described, there is no connection between the
deviated action and its original action in the short-term attack,
and the attacking action only depends on the current state, that
is to say, there is no connection between the current attack and
the future reward. However, to make up this problem, we need to
find a good way to add the long-term effects to the attacker. One
direct way is to apply the final rewards decrease to represent, and
ensure the attack can accomplish some mission destruction tasks.
Therefore, the long-term rewards is defined as followed:

rltr =

⌊
Ru − r
Ru − Rl

⌋
(12)

If there are long-term effects over the agent, its final rewards will
have a large decrease which can be represented by the percentage
decline of the rewards. r denotes the accumulate reward of the
current step r =

∑t
i ri, where ri is the normal reward in the

original setting. Ru is the upper bound of the accumulate reward,
and Rl denotes the lower bound the accumulate reward. In our
ramework, the final reward is defined as a summation format
ith different ratio, i.e.,

X
t = αrstr + (1 − α)rltr (13)

here α is the hyperparameter that defines the ratio of rstr and
ltr .

In general, the short-term reward is designed to stimulate
gents to achieve attacks with fewer attacks which in turn en-
ures the stealthiness of the attacks, while the long-term re-
ard is designed to ensure the effectiveness of the attacks by
inimizing the accumulated rewards.
And the way to train the attacker X is designed as shown in

lgorithm 1 by freezing the well-trained agent T . In the algo-
ithm, M is the number of epochs, D is the replay memory of the
ttacker, and its capacity is set to N .

In the algorithm, the whole process is represented by lines
–26, where in line 2 we need to initialize the agent state st
t the beginning of each episode. Line 4 is the action selection
f the trained agent T . Lines 5–10 indicate action selection by
he attacker X using the epsilon-greedy strategy. Lines 11–19
epresent the attacking steps in the training, where lines 11–12
epresent that the attacker will do nothing when the action is
one, lines 13–19 represent the procedures when action is not
one, where line 14 is the attack with the ATK method, and when
he attack is completed, a new state will be obtained and on
hich the agent will have a new action, which is in line 15. And

ines 16–18 are to determine whether the attack is successful.
ine 20 is to obtain the reward after the attack with Eq. (13), and
ine 21 is to store the transition sample into memory D for rollout
raining. Lines 22–24 indicate the model optimization procedures.
ine 25 indicate updating the target action-value function Q̂ with
every C steps.

. Experiments

In the experiment, we will first verify the effectiveness of the
roposed framework in the attack, then show the transferabil-
ty of the attacking framework in different scenarios, i.e., trans-
er across the environment and transfer across the attacking
ethods, and finally apply adversarial training to enhance the
obustness of DRL.

Y. Li, Q. Pan and E. Cambria Knowledge-Based Systems 250 (2022) 108965

s
S

e
a
o
a

5

a

A

f
i
m
c
w
w
C
a
a
l
w
r
t

Input: Environment Atari, Attacker X , Agent T ;
Initialize replay memory D to capacity N;
Initialize X ’s parameters Q (sX , aX) with random weight θX and
load the well-trained T ’s weight θ T ;
Initialization target action-value function Q̂ of attacker with
θX
−

= θX ;
1 for episode=1,M do
2 Initialize status st ;
3 while not Done do
4 Select Agent T ’s action at ;
5 Sample a value v from a uniform distribution [0, 1];
6 if v ≤ ϵ then
7 Select a random action aXt from attack action space;
8 else
9 select aXt = argmaxaX Q (sXt , aXt ; θX);

10 end
11 if aXt = None then
12 Set sXt = st ;
13 else
14 Obtained sXt with attack methods ATK ;
15 Select new action atnew = argmaxaX Q (sXt , at ; θ T);
16 if atnew ! = at then
17 Attack Success;
18 end
19 end
20 Obtain rXt with Eq. (13);
21 Store transition (sXt , aXt , rXt , sXt+1) in D;
22 Sample random minibatch of transition (sj, aj, rj, sj+1)

from D;
23 Set

yt =

{
rj terminates at j + 1

rj + γ maxa′ Q̂ (sj+1, a′
; θX

−
) otherwise

;

24 Perform a gradient descent step on (yj − Q (sj, aj; θX))2

w.r.t. the parameter θX ;
25 Set st+1 = st ;
26 Every C steps reset Q̂ = Q ;
27 end
28 end

Algorithm 1: The attacking against the reinforcement
learning with man-in-the-middle.

5.1. Settings

All of our experiments are run on the gym platform. The games
elected include {Pong, Fishing Derby (Fishing for short), Boxing,
eaquest, MsPacMan (PacMan for short)}. The DRL is implemented
in python based on Pytorch package,1 and the input of Agent and
the attacker from Atari’s games are selected image frame which
is transferred to 84 × 84-pixel image, and the policy network
is a classical convolutional neural network which is to map the
input to the action space. There are three convolutional layers
with the size of (32, 8, 8, 4), (64, 4, 4, 2) and (64, 3, 3, 1), where
the first value in the bracket is the number of the filters, the
second and the third values denote the filter size, and the last
value represents the stride size. The last two layers are the fully
connected functions that map the hidden representation to the
action space, and the shape of the weights in these two layers are
(3136, 512) and (512, action space). As we have described earlier,
there are two actions for the attacker which are {None, Attack}.
The activation function is ReLU. And there is the same structure of
the policy neural network in Attacker. The structure of the policy
network is illustrated in Fig. 2.

1 https://pytorch.org/
5

Fig. 2. The structure of the policy network.

The detailed hyper-parameters are listed in Table 1. Specifi-
cally, the learning rate is 1e-4, and the batch size is 32. The replay
memory buffer size is set to 1e6, and the discount factor γ is 0.99.
During the training, the current network updating frequency is
4, and the target network updating frequency is 100 by copying
the parameters of Q (sX , aX) to the target network (i.e., C = 100).
In the ϵ-greedy policy, the start value is 1.0, and the end value
is 0.01 with the fraction of number steps 0.1. The training starts
after 1e4 steps, and the maximum training step is 1e7. To balance
rstr and rltr , α is set to 0.5 in Eq. (13).

The evaluation metrics include the designed long-term reward
rltr and short-term reward rstr . To make fair comparisons, all the
xperiments are sharing the same settings, and all the results are
veraged from three times test. We will report the performance
f different attacking methods, and the detailed models are listed
s followed:

• Uniform Uniform denotes attacks are deployed in a uniform
distribution. And this was proposed by Huang et al. [11].

• Strategically Timed Strategical Timed means the attack only
happens at the point where the attack score is higher than
the threshold, attack score can be calculated as in Eq. (4).
And this was proposed by Lin et al. [13].

.2. Attack evaluation

To evaluate the attacking effectiveness, we first train an oracle
gent T on the games we selected. Then train the attacker X

by freezing T . In order to have a good understanding of the
attacking stealthy and effectiveness, all the results are reported in
the designed balanced rewards rX that are calculated in Eq. (13).
nd the results are shown in Table 2.
From the table, we can see that all the cases in our proposed

ramework have a better performance as it has higher attack-
ng rewards. To our surprisingly, C&W is not the best-attacking
odel, on the contrary, and its performance is the worst one
ompared with the other two attacking approaches. One reason
e think is that the attacking agent cannot learn a stable policy
hen facing the small state variance, as one of the objectives of
&W is to minimize the distance between the adversarial sample
nd the original sample as such it is a model-specific attack
lgorithm, therefore its use here makes its attack performance
imited. To validate this hypothesis, we compared images that
ere attacked by different models at the same time, and these
esults are shown in Fig. 4. In the meantime, we also reported the
ime usage with different attacking approaches, and the results

https://pytorch.org/

Y. Li, Q. Pan and E. Cambria Knowledge-Based Systems 250 (2022) 108965

a
s
l
f
l
t
f
v

5

w
r
a
l
o
s
p

s
T
p
i
l
c
a

Table 1
The hyper-parameters applied in this paper.
Parameter Value Parameter Value

Learning rate 1e−4 Batch size 32
Replay buffer D 1e6 Update current network frequency 4
Discount factor γ 0.99 Update target network frequency C 100
ϵ-greedy start threshold 1.0 Train stage >1e4
ϵ-greedy end threshold 0.01 Fraction of number steps 0.1
α 0.5 Maximum number steps 1e7
e

i
o
e

5

t
p
a
t
a
t
d

Table 2
The attack evaluation with different attacking models, the higher the better, the
value is calculated with Eq. (13).
Methods Pong Seaquest Boxing PacMan Fishing

Uniform (FGSM) 0.77 0.67 0.66 0.64 0.70
Uniform (PGD) 0.81 0.64 0.70 0.67 0.70
Uniform (C&W) 0.04 0.54 0.37 0.56 0.54

Strategically Timed (FGSM) 0.86 0.74 0.79 0.59 0.62
Strategically Timed (PGD) 0.87 0.74 0.89 0.65 0.66
Strategically Timed (C&W) 0.07 0.62 0.46 0.40 0.47

Our (FGSM) 0.85 0.80 0.86 0.78 0.72
Our (PGD) 0.98 0.81 0.92 0.82 0.75
Our (C&W) 0.15 0.69 0.51 0.56 0.54

Fig. 3. The time with different attack approaches.

re shown in Fig. 3. From Fig. 4, we can see that the adversarial
ample from C&W is the cleanest, and from Fig. 3, C&W has the
ongest time for attack conducting. And these make it difficult
or the attacker to learn the adversarial strategy because of the
ong-time adversarial sample generation and the little change of
he adversarial sample generated. However, under our proposed
ramework, PGD achieves the best performance. And this is also
alidated in the cases of ‘‘Strategically Timed’’ and ‘‘Uniform’’.

.2.1. Short-term reward & long-term reward
To make the results more clear, we use both short-term re-

ard and long-term reward to demonstrate the attack reward
X . The short-term attack denotes the single attack affects the
gent’s behavior directly, i.e., high attacking success rate with the
ow attacking rate. And the long-term attack is the embodiment
f the final effect of the series of attacks. And the results are
hown in Fig. 5, and the points on the top right will have better
erformance in both immediate and long-term attacks.
In the figure, different attack strategies are shown in different

hapes. • denotes the ‘‘Uniform’’ attack, ■ is the ‘‘Strategically
imed’’ attack, and ■ is our proposed attacking framework. And
oints of the same color represent the same type of attack: blue
s the FGSM, brown is the PGD and green is the C&W. The straight
ines are the contours that have the same rX . From the figure, we
an see that our proposed framework has the best performance as
ll nodes of the same type are below these lines. And especially
6

Table 3
The comparisons between different evaluation metrics.
Case Rewards rs ra rstr rltr r

1 −9.38 100% 56% 0.44 0.72 0.58
2 −8.69 100% 15% 0.85 0.71 0.78
3 −11.44 98% 4% 0.94 0.77 0.86

in the game of Pong, the attack with PGD under our proposed
framework has the best performance by achieving the highest
score in long-term reward and short-term reward at the same
time. And this means our proposed framework has obtained the
ability of effective stealthy attack. Specifically, there is a negative
correlation between short-term reward and long-term reward,
and the relationship between the two is difficult to balance, and
this phenomenon is validated both in the cases of ‘‘Strategically
Timed’’ and ‘‘Uniform’’. Another interesting discovery in these
two attacking scenarios is that all the games prefer having higher
long-term rewards no matter what short-term rewards are, espe-
cially when the long-term reward is higher than the threshold of
0.5.

5.2.2. Advantages of the metrics
In this paper, we applied the newly designed metrics to eval-

uate the attack effectiveness and stealthy, to validate the wealth
and goodness of the proposed new metrics, a comparison is made
over the Pong game whose upper bound of the reward is 21,
and the results are illustrated in Table 3. The general way to
show the effectiveness of an attack is to use the reduction of
the reward, which can be seen in the first column of Table 3.
This approach is straightforward and clear in terms of attack
effectiveness measurement and is used in many works [17,33].
However, we first need to know the upper bound of the reward
and then can know how much the attack is reduced, meanwhile,
this measurement does not reveal how many attacks have been
launched against the agent, for example, in cases 1 and 2, the
attack success ratio rs against the agent is 100% in both cases,
but the attack ratio ra differs significantly. However, among our
valuation metrics, there are attack success ratio rs and attack

ratio ra, which directly yield the short-term reward rstr , and this
s a good metric to evaluate stealthiness. Therefore, in terms
f our last column of Table 3, our proposed metric r balances
ffectiveness and stealthy well.

.3. Transferabilities

How does the well-trained attacker behave when transferred
o another environment, and how does the well-trained policy
erforms when we cooperate with another ATK (i.e., FGSM, PGD,
nd C&W). To answer these two questions well, we first transfer
he well-trained attacker to different environments (i.e., games),
nd the details are presented in Section 5.3.1. We then cooperate
he well-trained policy with different attacking methods, and the
etails are described in Section 5.3.2.

Y. Li, Q. Pan and E. Cambria Knowledge-Based Systems 250 (2022) 108965

t
o
i

p
a
w
t
o
t
g
a
o
e
t

Fig. 4. The craft adversarial frame with different attack approaches, the value in the bracket indicates the absolute distance from the original frame.
Fig. 5. The detailed results.
Table 4
Rewards rX based on different transfer cases, ‘‘From’’ represents the
original environment in which the attack model was trained, and ‘‘To’’
represents the game to which the attack model was transferred. The
background color indicates the degree of the decrease compared to the
normal condition. The darker the color, the greater the degree.

From

Pong Sequest Boxing PacMan Fishing

To

Pong 0.98 0.04 0.37 0.54 0.04
Sequest 0.48 0.81 0.51 0.52 0.48
Boxing 0.47 0.10 0.92 0.60 0.10
PacMan 0.51 0.48 0.50 0.82 0.48
Fishing 0.64 0.15 0.29 0.35 0.75

5.3.1. Transferability across environments
In this scenario, we select PGD which performs the best as

he attacking method. Then we transfer the well-trained policy to
ther environments, and the rewards after attacking are reported
n Table 4.

From the table, we can see that almost all the attackers have a
erformance decrease compared with their original environment,
nd the performance of some cases drops as much as 90%. The
orst case is the policy learned from Seaquest and Fishing, and
hey can hardly adapt in the new environment as more than half
f the cases are in low reward rX . However, there is still some
ransferring capability in our model. For example, with strate-
ies learned from Pong, Boxing, and PacMan, the performance
cross different environments remains around 0.5. Based on those
bservations, we can see that when the attacker enters a new
nvironment, it still needs to be fine-tuned or retrained to adapt
o the new state.
7

Table 5
Rewards rX based on different transfer cases,
‘‘Attacking Methods’’ are selected from FGSM,
PGD, C&W, and ‘‘Policy’’ is the well-trained
policy with different attacking methods. back-
ground color indicates the degree of the
increase and decrease compared to normal
condition, with green indicating the increase
rate and red indicating the decrease rate. The
darker the color, the greater the degree.

ATK

FGSM PGD C&W

Policy
FGSM 0.80 0.76 0.64
PGD 0.81 0.81 0.72
C&W 0.75 0.71 0.69

5.3.2. Transferability across attacking methods
Generally, there are three well-trained policies under three

attacking methods. To validate the transferability of the well-
trained policy across different attacking methods and the at-
tacking methods across different well-trained policies, we select
the Seaquest as the test-bed, and we change different attacking
methods described in line 14 in Algorithm 1. And the experiment
results are reported in Table 5.

In the Table 5, with the FGSM learning the policy, the per-
formance degradation degree increases successively when the
attacking method is changed to PGD and C&W, and when using
the PGD learning the policy, changing the attacking method to
C&W will also degrade the performance, while changing the
attacking method to FGSM does not. However, when the attack-
ing method is changed to PGD and FGSM, the performance is
improved successively by using the C&W learning strategy. From

Y. Li, Q. Pan and E. Cambria Knowledge-Based Systems 250 (2022) 108965

t
a
s
o
C
p
h
c
t
i

5

b
w

b
i
t
m
w
o
d
f
b
a
r
e
h
t

6

i
l
a
o
w
f
t
t
F
a
f
t
w
w
c
n
h
u
s

hese observations, it can be seen that the transferability of the
ttacking policy across different attacking methods is not as sen-
itive as the environment. The same applies to the transferability
f the attacking methods across the different attacking policies.
ompared with the simple attacking method (e.g., FGSM), the
olicy learned from a more complex attacking method (e.g., C&W)
as better transferability. And the attack method PGD also has
ompetitive performance compared with C&W, which is one of
he reasons why we can get the best performance by using PGD
n our framework.

.4. Adversarial training

To validate the robustness of the model, we obtain the ro-
ust model (i.e., TR) by fine-tuning the oracle DQN T with the
ell-trained attacker X that attacks with PGD, then validate the

robustness with different attacking methods. The procedures are
shown in Algorithm 2. And the experiment results are listed in
Table 6.

Input: Environment Atari
1 Train an oracle agent T .
2 Freeze agent T , training attacker X with PGD.
3 Freeze the well-trained attacker X , fine-tune oracle agent

T with adversarial samples to obtain the robustness
model TR.
Algorithm 2: The adversarial training procedure.

From the table, we can see that our adversarial training has
oosted the model performance, and the improvement is rang-
ng from 2.32% to 18.90%. That means adversarial training with
he adversarial samples compensates for the vulnerability of the
odel to some degree. When we attack the robust agent TR again,
e can see that there is still a performance decrease in most
f the cases, but the degradation is less than the attack that
eployed directly on the Oracle agent T . In particular, the per-
ormance degradation of the PGD attack is the lowest, followed
y the FGSM attack, and the performance degradation of the C&W
ttack is the largest. From these observations, we can see that the
obustness of the model has indeed been improved to a certain
xtent after adversarial training, and the reason why PGD attack
as the lowest performance degradation is that we used it to train
he adversarial policy.

. Conclusions & future works

In this paper, we proposed an intelligent attacker with re-
nforcement learning by considering the short-term attack, and
ong-term attack at the same time, then provided a useful evalu-
tion metric to measure the attacking effectiveness and stealth. In
ur paper, the attack was deployed in a white-box environment
here we know the actions of the target agent, as well as in-

ormation about the state of each frame after the agent, performs
he action, and this prior information can be easily obtained since
he state and action are explicit information of the target agent.
rom the experimental results, we can see that the proposed
ttack method can achieve the goal in short steps attack. In the
ollowing step, we also conducted adversarial training to improve
he robustness of reinforcement learning. In future work, we
ill explore more intelligent attack agents and try to explain
hy such attacks are useful in black-box scenarios, where one
an employ parallel agents as target agents to accomplish policy
etwork learning for the attack. Furthermore, we will explore
ow the robustness of the model under adversarial training and
ncover the impact on the overestimate which is the inherent
hortcoming of the DQN when deploying attacks.
8

Table 6
Adversarial training with the well-trained adversarial attack. The back-
ground color indicates the degree of the increase and decrease compared
to normal condition, with green indicating the increase rate and red
indicating the decrease rate. The darker the color, the greater the degree.

Pong Fishing Boxing Seaquest PacMan

T 17.91 30.63 69.56 1177.50 804.69
T R 19.87 31.34 74.66 1400.00 1020.00
Attack (FGSM) 18.59 27.22 40.65 980.00 587.19
Attack (PGD) 19.94 30.06 58.56 1080.00 660.00
Attack (C&W) 19.24 10.31 36.34 950.00 464.06

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This research is supported by the National Natural Science
Foundation of China (No. 62103330), and the Fundamental Re-
search Funds for the Central Universities of China (3102021ZD-
HQD09).

References

[1] Yang Li, Wei Zhao, Erik Cambria, Suhang Wang, Steffen Eger, Graph routing
between capsules, Neural Netw. 143 (2021) 345–354.

[2] Haoran Li, Qichao Zhang, Dongbin Zhao, Deep reinforcement learning-
based automatic exploration for navigation in unknown environment, IEEE
Trans. Neural Netw. Learn. Syst. 31 (6) (2019) 2064–2076.

[3] Yang Li, Quan Pan, Suhang Wang, Tao Yang, Erik Cambria, A generative
model for category text generation, Inform. Sci. 450 (2018) 301–315.

[4] Haiyun Peng, Yukun Ma, Soujanya Poria, Yang Li, Erik Cambria,
Phonetic-enriched text representation for Chinese sentiment analysis with
reinforcement learning, Inf. Fusion 70 (2021) 88–99.

[5] Ke Zhang, Yuanqing Li, Jingyu Wang, Erik Cambria, Xuelong Li, Real-time
video emotion recognition based on reinforcement learning and domain
knowledge, IEEE Trans. Circuits Syst. Video Technol. (2021).

[6] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, Rob Fergus, Intriguing properties of neural net-
works, in: 2nd International Conference on Learning Representations, ICLR
2014, 2014.

[7] JinYin Chen, Yan Zhang, XueKe Wang, HongBin Cai, Jue Wang, ShouLing
Ji, A survey of attack, defense and related security analysis for deep
reinforcement learning, Acta Automat. Sinica 45 (2020) 1–19.

[8] Edgar Tretschk, Seong Joon Oh, Mario Fritz, Sequential attacks on agents
for long-term adversarial goals, 2018, arXiv preprint arXiv:1805.12487.

[9] Tong Chen, Jiqiang Liu, Yingxiao Xiang, Wenjia Niu, Endong Tong, Zhen
Han, Adversarial attack and defense in reinforcement learning-from AI
security view, Cybersecurity 2 (1) (2019) 1–22.

[10] Xian Wu, Wenbo Guo, Hua Wei, Xinyu Xing, Adversarial policy train-
ing against deep reinforcement learning, in: 30th {USENIX} Security
Symposium, {USENIX} Security 21, 2021.

[11] Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, Pieter Abbeel,
Adversarial attacks on neural network policies, 2017, arXiv preprint arXiv:
1702.02284.

[12] Vahid Behzadan, Arslan Munir, Vulnerability of deep reinforcement
learning to policy induction attacks, in: International Conference on Ma-
chine Learning and Data Mining in Pattern Recognition, Springer, 2017,
pp. 262–275.

[13] Yen-Chen Lin, Zhang-Wei Hong, Yuan-Hong Liao, Meng-Li Shih, Ming-Yu
Liu, Min Sun, Tactics of adversarial attack on deep reinforcement learning
agents, in: Proceedings of the 26th International Joint Conference on
Artificial Intelligence, 2017, pp. 3756–3762.

[14] Nicholas Carlini, David Wagner, Magnet and" efficient defenses against
adversarial attacks" are not robust to adversarial examples, 2017, arXiv
preprint arXiv:1711.08478.

[15] Jernej Kos, Dawn Song, Delving into adversarial attacks on deep policies,
2017, arXiv preprint arXiv:1705.06452.

[16] Alessio Russo, Alexandre Proutiere, Optimal attacks on reinforcement
learning policies, 2019, arXiv preprint arXiv:1907.13548.

http://refhub.elsevier.com/S0950-7051(22)00467-1/sb1
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb1
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb1
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb2
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb2
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb2
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb2
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb2
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb3
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb3
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb3
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb4
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb4
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb4
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb4
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb4
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb5
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb5
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb5
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb5
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb5
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb7
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb7
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb7
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb7
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb7
http://arxiv.org/abs/1805.12487
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb9
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb9
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb9
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb9
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb9
http://arxiv.org/abs/1702.02284
http://arxiv.org/abs/1702.02284
http://arxiv.org/abs/1702.02284
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb12
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb12
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb12
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb12
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb12
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb12
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb12
http://arxiv.org/abs/1711.08478
http://arxiv.org/abs/1705.06452
http://arxiv.org/abs/1907.13548

Y. Li, Q. Pan and E. Cambria Knowledge-Based Systems 250 (2022) 108965
[17] Yiren Zhao, Ilia Shumailov, Han Cui, Xitong Gao, Robert Mullins, Ross
Anderson, Blackbox attacks on reinforcement learning agents using
approximated temporal information, in: 2020 50th Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks Workshops,
DSN-W, IEEE, 2020, pp. 16–24.

[18] Chaowei Xiao, Xinlei Pan, Warren He, Jian Peng, Mingjie Sun, Jinfeng
Yi, Mingyan Liu, Bo Li, Dawn Song, Characterizing attacks on deep
reinforcement learning, 2019, arXiv preprint arXiv:1907.09470.

[19] Yi Han, Benjamin IP Rubinstein, Tamas Abraham, Tansu Alpcan, Olivier
De Vel, Sarah Erfani, David Hubczenko, Christopher Leckie, Paul Montague,
Reinforcement learning for autonomous defence in software-defined net-
working, in: International Conference on Decision and Game Theory for
Security, Springer, 2018, pp. 145–165.

[20] Panagiota Kiourti, Kacper Wardega, Susmit Jha, Wenchao Li, Trojdrl: Trojan
attacks on deep reinforcement learning agents, 2019, arXiv preprint arXiv:
1903.06638.

[21] Xian Yeow Lee, Sambit Ghadai, Kai Liang Tan, Chinmay Hegde, Soumik
Sarkar, Spatiotemporally constrained action space attacks on deep rein-
forcement learning agents, in: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 34, (04) 2020, pp. 4577–4584.

[22] Ian J. Goodfellow, Jonathon Shlens, Christian Szegedy, Explaining and
harnessing adversarial examples, 2014, arXiv preprint arXiv:1412.6572.

[23] Anay Pattanaik, Zhenyi Tang, Shuijing Liu, Gautham Bommannan, Girish
Chowdhary, Robust deep reinforcement learning with adversarial attacks,
in: Proceedings of the 17th International Conference on Autonomous
Agents and MultiAgent Systems, 2018, pp. 2040–2042.

[24] Vahid Behzadan, Arslan Munir, Whatever does not kill deep reinforcement
learning, makes it stronger, 2017, arXiv preprint arXiv:1712.09344.
9

[25] Vahid Behzadan, William Hsu, Analysis and improvement of adversarial
training in dqn agents with adversarially-guided exploration (age), 2019,
arXiv preprint arXiv:1906.01119.

[26] Zhaoyuan Gu, Zhenzhong Jia, Howie Choset, Adversary a3c for robust
reinforcement learning, 2019, arXiv preprint arXiv:1912.00330.

[27] Lerrel Pinto, James Davidson, Rahul Sukthankar, Abhinav Gupta, Robust ad-
versarial reinforcement learning, in: International Conference on Machine
Learning, PMLR, 2017, pp. 2817–2826.

[28] Vahid Behzadan, Arslan Munir, Mitigation of policy manipulation attacks
on deep q-networks with parameter-space noise, in: International Con-
ference on Computer Safety, Reliability, and Security, Springer, 2018,
pp. 406–417.

[29] Kirill Neklyudov, Dmitry Molchanov, Arsenii Ashukha, Dmitry Vetrov,
Variance networks: When expectation does not meet your expectations,
in: International Conference on Learning Representations, 2018.

[30] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,
Adrian Vladu, Towards deep learning models resistant to adversar-
ial attacks, in: International Conference on Learning Representations,
2018.

[31] Nicholas Carlini, David Wagner, Towards evaluating the robustness of
neural networks, in: 2017 IEEE Symposium on Security and Privacy, IEEE,
2017, pp. 39–57.

[32] Richard S. Sutton, Andrew G. Barto, Reinforcement Learning: An
Introduction, MIT Press, 2018.

[33] Jianwen Sun, Tianwei Zhang, Xiaofei Xie, Lei Ma, Yan Zheng, Kangjie
Chen, Yang Liu, Stealthy and efficient adversarial attacks against deep
reinforcement learning, in: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, (04) 2020, pp. 5883–5891.

http://refhub.elsevier.com/S0950-7051(22)00467-1/sb17
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb17
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb17
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb17
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb17
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb17
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb17
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb17
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb17
http://arxiv.org/abs/1907.09470
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb19
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb19
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb19
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb19
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb19
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb19
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb19
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb19
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb19
http://arxiv.org/abs/1903.06638
http://arxiv.org/abs/1903.06638
http://arxiv.org/abs/1903.06638
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb21
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb21
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb21
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb21
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb21
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb21
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb21
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1712.09344
http://arxiv.org/abs/1906.01119
http://arxiv.org/abs/1912.00330
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb27
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb27
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb27
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb27
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb27
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb28
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb28
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb28
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb28
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb28
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb28
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb28
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb31
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb31
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb31
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb31
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb31
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb32
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb32
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb32
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb33
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb33
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb33
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb33
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb33
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb33
http://refhub.elsevier.com/S0950-7051(22)00467-1/sb33

	Deep-attack over the deep reinforcement learning
	Introduction
	Related works
	Adversarial attack
	Adversarial defense

	Preliminary
	Deep Q-learning network
	Strategically timed selection
	Attacking methods

	Method description
	Short-term attacking reward
	Long-term attacking reward

	Experiments
	Settings
	Attack evaluation
	Short-term reward long-term reward
	Advantages of the metrics

	Transferabilities
	Transferability across environments
	Transferability across attacking methods

	Adversarial training

	Conclusions future works
	Declaration of competing interest
	Acknowledgments
	References

